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Introduction

In the 1920's, physicists were trying to develop a relativistic version of quantum mechanics. The
basis of quantum mechanics is the Schrödinger's Equation :

i}
∂Ψ

∂t
= HΨ

for the wave function Ψ where H is a di�erential operator determined by the classical energy in the

system. For example, if we consider a free particle, its energy is E = p2

2m and the equation becomes

i}
∂Ψ

∂t
= − }

2m
∆Ψ

This formulation of quantum mechanics is based on classical Newtonian mechanics. However,
Eistein's Principle of Special Relativity stated that physical laws should be invariant under Lorentz
transformations of space-time coordinates (our universe is seen as a 4-manifold with Lorentz metric),
that is linear transformations of R4 which preserves the inde�nite quadratic form :

(x, x) = x2
0 − x2

1 − x2
2 − x2

3

where x0 = ct is the time-like coordinate and the constant c is the speed of light in vacuum.
Now the principle of Lorentz Invariance led Einstein to the conclusion that the energy of a free

particle is given by
E =

√
p2c2 +m2c4

which is not what appeared in the previous example. Because of the square root, it is impossible to
convert this expression into a classical di�erential operator. The �rst solution to this di�culty was
to apply the Schrödinger's Equation twice. This gives a term corresponding to E2 on the right-hand
side, and yields the Klein-Gordon Equation

−}2∂
2Ψ

∂t2
= −}2c2∆Ψ +m2c4Ψ

which can be rewritten as {
� +

(mc
}

)2
}

Ψ = 0

where

� =
1

c2

∂2

∂t2
−∆ =

∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

In the late 1920's, British physicist Paul Dirac (1902-1984), was dissatis�ed with the Klein-
Gordon approach. According to Dirac, the principle of causality required the Schrödinger's Equation
to be �rst-order in time. Lorentz invariance then implied it should be �rst-order in all variables.
This was impossible to achieve for scalar wave functions, so Dirac decided to consider vector-valued
wave functions

Ψ = (ψ1, . . . , ψN )

and to search for a �rst-order linear Lorentz-invariant operator D (later called a Dirac operator)
with

D2 = �

Writing

D =
3∑

µ=0

γµ
∂

∂xµ
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where the γµ are N ×N matrices, we see that

D2 =

3∑
µ,ν=0

1

2
(γµγν + γνγµ)

∂

∂xµ

∂

∂xν
= �

implies the equations
γµγν + γνγµ = ±2δµν

These are easily solved for small values of N . For instance, for N = 4

σ1 =

0 i

i 0

 σ2 =

0 −1

1 0

 σ3 =

i 0

0 −i


γ0 =

 0 Id

Id 0

 γµ =

σµ 0

0 −σµ

 , µ = 1, 2, 3

Using such matrices, Dirac wrote down in 1928 a relativistic Schrödinger equation for an electron
in a magnetic �eld which eventually gave spectacular accord with experiment. However, there was a
signi�cant problem : the existence of negative energy solutions, that is eigenfunctions of the operator
with negative eigenvalues.

Dirac, believing in the beauty of the equations, asserted that such particles should exist. He
proposed the idea that the negative states are �lled in general, but when a state is empty, we see
it. Such empty states are called "antiparticles". The antielectron was called a positron, which was
found in laboratory in 1932.

Underlying Dirac's discovery was an important mathematical fact : Lorentz transformations of
space-time coordinates yield linear transformations of Ψ = (ψ1, . . . , ψN ) which were determined only
up to a sign ±1. The additional property determining the sign was thought of as an internal spin of
the particle. The transformations of the spinor wave functions Ψ did not constitute a representation
of the Lorentz group L but rather a representation of its simply-connected 2-fold covering group
L̃→ L.

Consider Rn and its standard norm ‖x‖2 =
n∑
i=1
x2
i , and denote by Mn×n the set of all n × n

matrices with real coe�cients. The orthonormal group ans its Lie algebra are then de�ned by

SOn = {g ∈Mn×n : gtg = Id}
son = {g ∈Mn×n : gt + g = 0}

We know that for n ≥ 2,
π1(SOn) = Z�2Z

and there is a universal covering group which sits in the short exact sequence

0→ Z�2Z→ Spinn → SOn → 1

The representations of Spinn (which correspond bijectively to representations of son) are gener-
ated, via direct sums and tensor products, by :

� The basic representations of Rn;

� The spinor representations given by Cli�ord multiplication.
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These latter representations are not representations of SOn. To understand them systematically, we
must �rst understand Cli�ord algebras.

But then, why are eigenvalues of the Dirac operator so interesting ? The physical interest stems
from the observation that if DΨ = λΨ, then the time-dependant spinor �eld Φ(x, t) := eitλΨ(x)
satis�es the physical Dirac equation

∂Φ

∂t
= iDΦ

Hence, λ can be interpreted as the frequency or, equivalently, as the energy of the particle whose
wave function is Φ. Computing the spectrum of the Dirac operator in particular spaces are the main
goal of this report, especially in homogeneous spaces.

The �rst part will focus on basic de�nitions and results about Cli�ord algebras, spin groups,
spin structures and the Dirac operator. This can be easily skipped by readers already familiar with
these concepts, and one can come back at any time when needed to look at de�nitions or notations.
An excellent reference for an introduction to Cli�ord algebra and spin group is [1]

Then, we will study the Dirac operator on homogeneous spaces, starting by giving some results
on homogeneous spaces that will help our study. We will give an explicit formula for this operator,
and then use it to computes the eigenvalues on the 3-sphere equipped with a Berger's metric, and
on lens spaces. It is based on the article [2].

Finally, general results are given, and some of them proved, in the last part. It will show how the
metric changes the eigenvalues, by computing again on the 3-sphere, but this time with the classical
spherical metric. These, and more, are available in [3] and [4].

The appendices are here to help any reader who could have trouble with some of the notions or
results used throughout this report.
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1 Cli�ord algebras, spin structures and Dirac operators

To begin with, we start by giving some de�nitions and basic results about Cli�ord algebras1 and
spin groups. Although spin groups can be de�ned without Cli�ord algebras, the choice made here
is to get the reader used to notations and properties of Cli�ord algebras widely used throughout
this report. All of these will lead us then to the main concepts of spinor representations and Dirac
operator.

1.1 Cli�ord algebras

De�nition 1 (Cli�ord algebra). Let V be an n-dimensional vector space over the �eld K = R or
C, and q a bilinear symmetric form on V . The Cli�ord algebra Cl(V, q) associated with (V, q) is the
associative algebra with unit, de�ned by :

Cl(V, q) = V ⊗�I(V, q) (1)

where V ⊗ = ⊕
i≥0
V ⊗i is the tensor algebra of V and I(V, q) the two-sided ideal generated by all

elements of the form x⊗ x+ q(x, x)1, for x ∈ V .
The product in the Cli�ord algebra will be denoted by the dot ·

Examples. � If we consider the trivial quadratic form q ≡ 0 over a vector space V , then the
Cli�ord algebra Cl(V, q) is just the exterior algebra Λ∗(V ).

� If we take K = R, V = R and q = −x2. Then Cl(V, q) ' C.

Remark. There is a natural map i : V → Cl(V, q) obtained by considering the natural embedding
V ↪→ V ⊗, followed by the projection V ⊗ → Cl(V, q).

Viewing V as a subset of Cl(V, q) in that way, the algebra Cl(V, q) is generated by V (and the
unit 1), subject to the relation v · v = −q(v, v)1.

Proposition 2 (Universal property). Let A be an associative algebra with unit and f : V → A a
linear map such that :

f(v)2 = −q(v, v)1A (2)

Then there exists a unique K-algebra homomorphism f̃ : Cl(V, q)→ A satisfying f̃ ◦ i = f
Furthermore, if C is an associative K-algebra with unit carrying a linear map i′ : V → C

satisfying i′(v)2 = −q(v, v)1C , with the property above, then C is isomorphic to Cl(V, q).

Remark. 1. The Cli�ord algebra Cl(V, q) can be abstractly de�ned as the algebra generated by
n+ 1 elements {v0, . . . , vn} subject to the relations :

v0 · vi = vi · v0 = vi , v
2
o = v0

v2
i = −v0 (i ≥ 1) , vi · vj = −vj · vi (1 ≤ i 6= j)

where v0 corresponds to 1, and {v1, . . . , vn} to a q-orthonormal basis of V .

2. If {e1, . . . , en} is a q-orthonormal basis of V , then the system

{1, ei1 . . . eik , 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n} (3)

spans Cl(V, q) as vector space, thus dimCl(V, q) ≤ 2n (actually this is an equality).

1Named after English mathematician William Kingdon Cli�ord (1845-1879), known for his work on graph theory
and projective surfaces.
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3. Cli�ord algebras are endowed with the following fundamental automorphisms.

(a) Using the universal property, the injective morphism V ↪→ Cl(V, q) induced by the map
−Id : v 7→ −v gives rise to the automorphism

α : Cl(V, q)→ Cl(V, q) (4)

ei1 . . . eik 7→ (−1)kei1 . . . eik

As α2 = Id, we get the decomposition Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q) where

Cli(V, q) = {ϕ ∈ Cl(V, q), α(ϕ) = (−1)iϕ} (5)

Clearly, for i, j ∈ Z�2Z, we have Cl
i(V, q) · Clj(V, q) ⊂ Cli+j(V, q).

Thus the Cli�ord algebra Cl(V, q) is a Z�2Z-graded algebra, that is a superalgebra. The
subspace Cl0(V, q) (resp. Cl1(V, q)) is called the even (resp. odd) part of Cl(V, q).

(b) Consider the K-algebra anti-automorphism de�ned by :

t : V ⊗ → V ⊗

xi1 ⊗ · · · ⊗ xik 7→ xik ⊗ · · · ⊗ xi1

Since t (I(V, q)) ⊂ I(V, q), there is an induced automorphism :

t : Cl(V, q)→ Cl(V, q)

xi1 · · ·xik 7→ xik · · ·xi1

An immediate application of the universal property (Proposition 2) shows that if there exists a
K-isomorphism f between two K-vector spaces V and V ′, endowed respectively with two bilinear
symmetric forms q and q′, such that f∗q′ = q, then f uniquely extends to a K-algebra isomorphism
between Cl(V, q) and Cl(V ′, q′).

Lemma 3. Let f : (V, q) → (V ′, q′) be an isometry. Then f uniquely extends to a K-algebra
isomorphism :

f̃ : Cl(V, q)→ Cl(V ′, q′)

Proof. Let g : (V, q)→ Cl(V ′, q′) be the composition i′ ◦ f . Then g veri�es :

g(v)2 = g(v) · g(v) = −q′(f(v), f(v))1Cl(V ′,q′) = −q(v, v)1Cl(V ′,q′)

since f is an isometry. So, by the universal property, g uniquely extends to g̃ : Cl(V, q)→ Cl(V ′, q′),
and since Cl(V ′, q′) veri�es the universal property, g̃ is an isomorphism. The uniqueness comes from
the fact that V and 1 generates Cl(V, q).

De�nition 4. The Cli�ord algebra Cln := Cl(Rn, qR) (resp. Cln := Cl(Cn, qC)) associated with
the canonical Euclidean scalar product qR (resp. qC) de�ned by qR(x, y) =

∑
i
xiyi (resp. q

C(z, w) =∑
i
ziwi) is called the n-dimensional real (resp. complex) Cli�ord algebra.

Examples. If {e1, · · · , en} denotes the canonical orthonormal basis of Rn, then the relations

ei · ej + ej · ei = 2δij

hold in Cln. Hence, we have the following facts :

1. A basis of Cl1 is given by {1, e1}. Since e2
1 = −1, one has Cl1 ' C.
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2. A basis of Cl2 is given by {1, e1, e2, e1 · e2}. Since the three vectors e1, e2, e1 · e2 verify the
same multiplication rules as the standard basis of imaginary quaternions, one has Cl2 ' H.

3. The volume element ω := e1 · e2 · e3 ∈ Cl3 is central and ω · ω = 1. De�ne

Π± :=
1

2
(1± ω)

Since

Π+ + Π− = 1 ,
(
Π±
)2

= Π±

Π− ·Π+ = Π+ ·Π− = 0

one has the decomposition Cl3 = Cl+3 ⊕ Cl
−
3 , where

Cl±3 := Π± · Cl3 = Cl3 ·Π±

A basis of Cl±3 is given by

{Π±,Π± · e1,Π
± · e2,Π

± · e1 · e2}

Hence Cl±3 ≈ H and Cl3 ' H⊕H.

Proposition 5. The n-dimensional real (resp. complex) Cli�ord algebras is isomorphic to the even
part of the (n+ 1)-dimensional real (resp. complex) Cli�ord algebra.

Cln ' Cl0n+1 and Cln ' Cl0n+1

Proof. Denote by {e1, · · · , en} and {e1, · · · , en+1} the canonical basis of Kn and Kn+1, K = R (resp.
C). This suggests to identify Kn with the image of the canonical injection in Kn+1 as the subspace
generated by the �rst n vectors. De�ne the linear map

f : Kn → Cl0n+1 (resp Cl0n+1)

ei 7→ ei · en+1

By de�nition of f , we have f(ei)
2 = −1. Thus, by the universal property, f extends to

f̃ : Cln → Cl0n+1 (resp. Cln → Cl0n+1)

Clearly, f̃ is an injective linear map between vector spaces of same dimension (dimCln = 2n and
dimCl0n+1 = 1

2 dimCln+1 = 1
22n+1 = 2n). Thus the map f̃ is an isomorphism.

1.2 Spin groups

We begin with the following remark : let v be any non zero vector of an Euclidean space (V, q). The
symmetry σv with respect to the hyperplane orthogonal to v is de�ned by

σv(x) = x− 2
q(x, v)

q(v, v)
v

Viewing V as a subset of Cl(V, q), we can write

σv(x) = x− (x · v + v · x) · v−1 · v = −v · x · v = −Ad(v)(x) (6)

Since any element of SO(V, q) is the product of an even number of symmetries of that type, it is
the image under the map Ad of a certain subgroup of invertible elements in Cl(V, q). We are thus
led to having a closer look at the group units in Cl(V, q).
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We consider the map :

N : Cl(V, q)→ Cl(V, q)

a 7→ α(ta) · a

Note that N(v) = |v|2, for all v ∈ V .
Denote by Cl∗(V, q) the group of invertible elements of Cl(V, q). It can be easily checked that

N(α(t(a−1))) ·N(a) = 1. Indeed, since α and t commutes, and are their own inverse, one has

N(α(t(a−1))) = α(tα(ta−1)))︸ ︷︷ ︸
=a−1

·α(ta−1)

So
N(α(t(a−1))) ·N(a) = a−1 · α(ta−1) · α(ta) · a = 1

This implies N (Cl∗(V, q)) ⊂ Cl∗(V, q). Since v · v = −|v|2, it is clear that any non zero vector
v ∈ V ⊂ Cl(V, q) lies in Cl∗(V, q), and v−1 = −v

|v|2 . For each a ∈ Cl∗(V, q), we consider the inner

automorphism

Ada : Cl(V, q)→ Cl(V, q)

b 7→ a · b · a−1

and the map

Ãda : Cl(V, q)→ Cl(V, q) (7)

b 7→ α(a) · b · a−1

As we pointed out in (6), for any non zero vector v, since α(v) = −v, the vector space V ⊂
Cl(V, q) is stable under Ãdv

Ãdv |V = σv

For any K-vector space V endowed with a symmetric bilinear form q, let P (V, q) be the group
de�ned by

P (V, q) := {a ∈ Cl∗(V, q) ; Ãda(V ) ⊂ V }
As before, we will restrict to the case (V, q) = (Kn, qK), where K = R or C.

Lemma 6. 1. The kernel of the map Ãd : P (V, q)→ GLn(K) is K∗.

2. N(P (V, q)) ⊂ K∗

3. The map N|P (V,q) : P (V, q)→ K∗ is a group homomorphism.

Proof. 1. Consider a ∈ Cl(V, q) such that Ãda = Id, that is, for all v ∈ Kn,

α(a) · v · a−1 = v ⇐⇒ α(a) · v = v · a (8)

We assume this equality holds only for v ∈ V since V generates Cl(Kn, qK). As above, denote
by {e1, . . . , en} the canonical basis of Kn. For each �xed 1 ≤ i ≤ n, any element a ∈ P (V, q)
can be uniquely written as a = b+ ei · c, where b and c are linear combinations of elements in
the basis {1, ei1 · · · · · eik , 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n} that do not involve ei.

Condition (8) written for v = ei is equivalent to α(b) · ei = ei · b and α(c) · ei = −ei · c. Indeed,

α(a) · v = v · a ⇐⇒ α(b+ ei · c) · ei = ei · (b+ ei · c)
⇐⇒ (α(b)− ei · α(c)) · ei = (ei · b)− c
⇐⇒ α(b) · ei = ei · b and α(c) · ei = −ei · c

9



Take a closer look at the last relation. If d ∈ V , such that α(d) · ei = −ei · d, since α(d) = −d,
we have −d · ei = −ei · d ⇐⇒ ei · d = −ei · d, so d = 0. Since V generates Cl(V, q), and α is
an automorphism of Cl(V, q), then c = 0. So a = b, which does not involve ei. The argument
holds for each ei, it follows that a is a scalar, and since a ∈ Cl∗(V, q), a is a non zero scalar.

2. For all v ∈ Kn and a ∈ P (V, q), we have Ãda(v) ∈ Kn (by de�nition of V and P (V, q)), hence

Ãda(v) =
t
(Ãda(v)).

This implies :

ÃdN(a)(v) = α(N(a)) · v · (N(a))−1 = α(α(ta)) · v · (α(ta) · a)−1

= α(α(ta)) · α(a) · v · a−1︸ ︷︷ ︸
=Ãda(v)=

t
Ãda(v)

·α(ta)−1

= ta · ta−1 · v · tα(a) · α(ta)−1

= v

Hence from 1 of this proof, we conclude that N(a) ∈ K∗. So N(P (V, q)) ⊂ K∗.

3. By 2, for a, b ∈ P (V, q),

N(a · b) = α(tb ·t a) · a · b = α(tb) · α(ta) · a · b = α(tb) ·N(a) · b
= N(a) · α(tb) · b since N(a) ∈ Kn

= N(a) ·N(b)

So N|P (V,q) : P (V, q)→ K∗ is a group homomorphism.

De�nition 7 (Spin group). The spin group Spinn is the subgroup of P (Rn, qR) generated by
elements of the form v1 . . . v2k, with k ≥ 1 and vi ∈ Rn, ‖vi‖ = 1 for 1 ≤ i ≤ 2k.

Proposition 8 (Covering of SOn). For n ≥ 2, the homomorphism ξ := Ãd|Spinn is a non trivial
double covering of the special orthogonal group SOn.

In particular, for n ≥ 3, the group Spinn is the universal cover of SOn.

Proof. We know that the image of a non zero vector by the map

Ãd : Rn\{0} ⊂ Cl∗n → GLn

is the symmetry with respect to the hyperplane orthogonal to this vector. The image of Ãd|Spinn
is then the group of even product of such symmetries, which by the Cartan-Dieudonné theorem, is
exactly the group SOn.

Using 3 of the previous lemma, any element of Spinn satis�es N(v) = 1. Indeed,

N(v1 . . . v2k) = N(v1) . . . N(v2k) = 1 since N(vi) = ‖vi‖ = 1

By 1 of the previous lemma, we conclude that :

ker(Ãd) = K∗ =⇒ ker(Ãd|Spinn) = K∗ ∩ Spinn

But
a ∈ (K∗ ∩ Spinn) ⇐⇒ a ∈ K∗ and ‖a‖ = 1 ⇐⇒ a = ±1

So the kernel of Ãd : Spinn → SOn is {±1}.
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To show that the covering is non trivial, it is su�cient to check that 1 and −1 belong to the
same connected component of Spinn. To see this, choose unit orthogonal vectors v, w ∈ Rn (n ≥ 2)
and note that the curve

c :
[
0,
π

2

]
→ Spinn

t 7→ c(t) = (v sin(t) + w cos(t)) · (v sin(t)− w cos(t))

satis�es c(o) = 1, c
(
π
2

)
= −1.

Finally, the last assertion follows from the fact that for n ≥ 2, we have Π1(SOn) = Z�2Z.

Examples. 1. For n = 1 : Spin1 ⊂ Cl01 ' Cl0 ' R. Thus Spin1 ' {±1} = Z�2Z. Moreover

ξ : Spin1 ' Z�2Z→ SO1 ' {1}
t 7→ t2

2. For n = 2, one has Spin2 ⊂ Cl02 ' Cl1 ' C. We verify that S1 ' U1 ' Spin2 via the map

S1 ' U1 → Spin2

eiθ 7→
(

cos

(
θ

2

)
e1 + sin

(
θ

2

)
e2

)
·
(
− cos

(
θ

2

)
e1 + sin

(
θ

2

)
e2

)
= cos(θ) + sin(θ)e1 · e2

� Let θ and ϕ ∈ S1. We have

cos(θ) + sin(θ)e1 · e2 = cos(ϕ) + sin(ϕ)e1 · e2 ⇐⇒

{
cos(θ) = cos(ϕ)

sin(θ)e1 · e2 = sin(ϕ)e1 · e2

cos(θ) + sin(θ)e1 · e2 = cos(ϕ) + sin(ϕ)e1 · e2 ⇐⇒

{
cos(θ) = cos(ϕ)

sin(θ) = sin(ϕ)

cos(θ) + sin(θ)e1 · e2 = cos(ϕ) + sin(ϕ)e1 · e2 ⇐⇒ θ ≡ ϕ mod 2π

� This application is linear. Indeed :

ei(θ+ϕ) 7→ cos(θ + ϕ) + sin(θ + ϕ)e1 · e2

= cos(θ) cos(ϕ)− sin(θ) sin(ϕ) + sin(θ) sin(ϕ)e1 · e2 + cos(θ) sin(ϕ)e1 · e2

and

(cos(θ) + sin(θ)e1 · e2) · (cos(ϕ) + sin(ϕ)e1 · e2)

= cos(θ) cos(ϕ) + sin(θ) sin(ϕ)e1 · e2 · e1 · e2 + cos(θ) sin(ϕ)e1 · e2 + sin(θ) cos(ϕ)e1 · e2

= cos(θ) cos(ϕ)− sin(θ) sin(ϕ) + sin(θ) sin(ϕ)e1 · e2 + cos(θ) sin(ϕ)e1 · e2

So if w = v1 · v2 ∈ Spin2, with vi ∈ R2 and ‖vi‖ = 1, then we can write v1 = cos(θ1)e1 +
sin(θ1)e2 and v2 = − cos(θ2)e1 + sin(θ2)e2.

So we have

w = v1 · v2 = (cos(θ1)e1 + sin(θ1)e2) · (− cos(θ2)e1 + sin(θ2)e2)

= cos(θ1 + θ2) + sin(θ1 + θ2)e1 · e2

By considering θ = θ1 + θ2, the image of eiθ is exactly w.
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The map ξ : U1 ' Spin2 → SO2 is then given by

eiθ 7→

cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)


Hence, under the identi�cation SO2 ' U1, ξ is the square map

ξ : U1 → U1

z 7→ z2

3. The algebra Cl03 is isomorphic to H by the isomorphism :

Φ :


1 7→ 1

e1 · e2 7→ i

e2 · e3 7→ j

e3 · e1 7→ k

By this isomorphism, Spin3 ⊂ Cl03 is identi�ed with a subgroup of H∗. If a ∈ Cl03 and q = Φ(a),
then

N(a) = 1 =⇒ α(ta) · a = 1 =⇒ ta · a = 1 since a ∈ Cl03
=⇒ 1 = Φ(1) = Φ(ta · a) = Φ(ta) · Φ(a) = qq since t(ei · ej) = −ei · ej

So Φ(Spin3) ⊂ Sp1 and since these two groups have the same dimension, we have Φ(Spin3) =
Sp1.

Under the identi�cation, the covering map ξ is given by

ξ : Spin3 ' Sp1 → SO3

q 7→
(
x ∈ Im(H) 7→ qxq−1 = qxq

)
where Im(H) = {bi+ cj + dk ∈ H} denotes the imaginary quaternions (which is isomorphic to
R3).

Furthermore, one can verify that the injective homomorphism

H→ C(2)

q = λ+ jµ 7→

λ −µ

µ λ


induces an isomorphism between the groups Sp1 and SU2.

1.3 Representations of spin groups

We only consider complex �nite dimensional representations of Spinn

ρ : Spinn → GL(V )

where V is a �nite dimensional complex vector space. Note that any representation of the group SOn
is obtained as a quotient of a representation ρ of the covering group Spinn verifying ρ(±1) = Id.

12



We will show that by considering the standard complex representations of the Cli�ord algebras,
the spin group Spinn inherits two irreducible complex representations if n is even and one if n is odd.
As these representations do not descend to the group SOn, they are called spinor representations.

We �rst consider complex representations of the Cli�ord algebras. Since every complex represen-
tation of Cln induces a complex representation of Cln and conversely, we shall only consider complex
Cli�ord algebras.

Theorem 9 (Representations of the Cli�ord algebra). The complex Cli�ord algebra Cln has a
unique irreducible representation for n even :

χn : Cln → End(Σn)

and two inequivalent irreducible representation for n odd :

χ±n : Cln → End(Σn)

where Σn is a complex vector space of dimN = 2b
n
2 c, where b.c denotes the �oor function.

For a better understanding of the structure of the Cli�ord algebra, we introduce the complex
volume element :

ωC := ib
n+1
2 ce1 . . . en ∈ Cln

It veri�es the relations : (
ωC
)2

= 1

x · ωC = (−1)n−1ωC · x , for x ∈ Rn ⊂ Cln

Proposition 10. For n odd,
Cln = Cl+n ⊕ Cl−n

where Cl±n := Π± · Cln = Cln ·Π±, and Π± = 1
2(1± ωC). Moreover, α(Cl±n ) = Cl∓n .

Proof. Since
(
ωC
)2

= 1, we have :

� Π+ + Π− = 1

� (Π±)
2

= Π±

� Π− ·Π+ = Π+ ·Π− = 0

Since n is odd, ωC and Π± are central in Cln. Indeed, remember that

x · ωC = (−1)n−1ωC · x , x ∈ Rn ∈ Cln

. So since n− 1 is even, and Cn generates Cln, ωC is central, and so is Π±.
Then, Cl±n = Π± · Cln are two ideals of Cln. Furthermore,

∀v ∈ Cln , v = Π+ · v︸ ︷︷ ︸
∈Cl+n

+ Π− · v︸ ︷︷ ︸
∈Cl−n

since Π+ + Π− = 1

and

v ∈
(
Cl+n ∩ Cl−n

)
=⇒ v = Π+ · v+ = Π− · v−

=⇒ Π+ · v =
(
Π+
)2 · v+ = Π+ ·Π− · v− = 0

=⇒ v = 0

So Cln = Cl+n ⊕ Cl−n .
Moreover, the volume element being odd, ωC ∈ Cl1n, we have α(Π±) = Π∓, hence α(Cl±n ) =

Cl∓n .
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Proposition 11. For n odd, let χn be a complex irreducible representation of Cln. Then either
χn(ωC) = Id, or χn(ωC) = −Id. The two possibilities occur and they are inequivalent.

Proof. Since
(
ωC
)2

= 1, then χ(ωC)2 = Id, so χ(ωC) is diagonalizable, and the eigenvalues are ±1.
So the vector space Σn can be written as Σn = Σ+

n ⊕ Σ−n , associated with the ±1 eigenvalue.
The volume element ωC being central, the eigenspaces Σ±n are Cln-invariant. Indeed, if v ∈ Σ+

n

then v = χ(ωC)(v) and for u ∈ Cln

χ(u)(v) = χ(u)χ(ωC)(v) = χ(u · ωC)(v) = χ(ωC)χ(u)(v)

So χ(ωC)χ(u)(v) = χ(u)(v), which means χ(u)(v) ∈ Σ+
n . And the same holds for Σ−n

The representation being irreducible, we conclude that Σn = Σ+
n or Σn = Σ−n . It is clear that the

two representations are inequivalent. By considering the action of Cln on Cl+n by left multiplication,
we see that the two possibilities occur.

De�nition 12 (Cli�ord multiplication). The map

Cln ⊗ Σn → Σn

σ ⊗ ψ 7→ σ · ψ

where

σ · ψ :=

{
χn(σ)(ψ) if n is even

χ+
n (σ)(ψ) if n is odd

is called the Cli�ord multiplication of σ with ψ.

Proposition 13. 1. For n even, the restriction of χn to Spinn (resp. Cl0n) splits into Σn =
Σ+
n ⊕ Σ−n , where Σ+

n and Σ−n are complex inequivalent irreducible representations of Spinn
(resp. Cl0n).

2. For n odd, the restriction of χ±n to Spinn (resp. Cl0n) are irreducible and equivalent.

3. For n even, for all x ∈ Rn\{0}, the linear map

χn(x) : Σ±n → Σ∓n

are isomorphisms. Moreover, under the isomorphism Cl0n ' Cln−1, the vector spaces Σ±

corresponds to the two inequivalent irreducible representations of Cln−1.

Proof. Note the complex subalgebra generated by Spinn ∈ Cln is the even part Cl0n of Cln. Hence,
two representations of Cl0n are irreducible or equivalent if and only if it is the case for their restriction
to Spinn. It is therefore su�cient to prove the assertion for Cl0n instead of Spinn.

1. Let n = 2m. Since ωC commutes with Cl0n, the restriction of χn to Cl0n ' Cln−1 splits into
Σn = Σ+

n ⊕ Σ−n , where

Σ±n = χn

(
1± ωC

2

)
(Σn)

By Theorem 9, it is su�cient to prove that Σ+
n and Σ−n are non-trivial vector spaces. Since

the linear map χn is an isomorphism, χn(ωC) cannot be equal to ±IdΣn = χn(±1).
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2. Again, we make use of the isomorphism Cl0n ' Cln−1. For n odd, we know that α (Cl±n ) = Cl∓n .
Note that the even part sits diagonally in the decomposition Cln = Cl+n ⊕ Cl−n . In fact, since
ωC ∈ Cl1n (since n is odd), we have

ωC : Cl0n → Cl1n

hence Cl0n ∩ Cl±n = {0}.
More precisely, we have

Cl0n = {u± + α(u±);u± ∈ Cl±n }

Since the two inequivalent irreducible representations of Cln are distinguished by the isomor-
phism α, by restriction to Cl0n, they become equivalent.

3. Since n is even, we have x · ωC = −ωC · x, ∀x ∈ Rn

Then

χn(x)Σ±n = χn(x)χn

(
1± ωC

2

)
(Σn) (par 1)

= χn

(
1∓ ωC

2

)
χn(x)(Σn)

⊂ Σ∓n

The linear map χn(x) is in fact an isomorphism since χn(x)2 = −‖x‖2Id. Indeed, let's write
x =

∑
1≤i≤n

xiei, where {e1, . . . , en} denotes an orthonormal basis of Rn. Then

χn(x)2(v) = χn(x)(χn(x)(v)) = χn(x)

 ∑
1≤j≤n

xjχn(ej)(v)


=
∑

1≤i≤n
xiχn(ei)

 ∑
1≤j≤n

xjχn(ej)(v)


=

∑
1≤i,j≤n

xixjχn(ei · ej)(v)

we have ei · ej = −ej · ei, since {e1, . . . , en} is an orthonormal basis. So the terms of the sum
for which i 6= j disappears. Also, ei · ei = −1, so

χn(x)2(v) =
∑

1≤i≤n
x2
iχn(−1)(v)

= −
∑

1≤i≤n
x2
i v = −‖x‖2v

For the last statement, it is su�cient to note that the isomorphism Cln ' Cl0n+1 maps the

volume element ωCn−1 := ib
n
2 ce1 . . . en−1 of Cln−1 to the volume element ωCn := ib

n+1
2
ce1 . . . en

of Cln.
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De�nition 14. The representation

ρn :=

{
χn|Spinn for n even

χ+
n|Spinn for n odd

is called the canonical complex spin representation and is denoted by (ρn,Σn).

If n is odd, ρn is irreducible, whereas if n is even, it splits into two irreducible components ρ±n .
Note that since ρ(−1) = −Id, the canonical complex spin representation does not descend to the
group SOn, and neither do its irreducible components ρ±n , if n is even.

1.4 Spin structure

We will now de�ne what is a spin structure on a manifold M . The de�nitions given here are for a
manifold with no other assumptions, and we will see later that on some speci�c spaces, the de�nition
of a spin structure is much more easier, for instance on homogeneous spaces (see subsection 2.1).

Let Mn be an oriented n-dimensional manifold and let P be a principal bundle over M with
group G. Recall that every representation

ρ : G→ Aut(V )

de�nes an associated vector bundle E, denoted by E = P ×ρ V , de�ned as the quotient of P × V
by the right G-action

g · (u,X) := (ug, ρ(g−1)X)

The equivalence class of (u,X) is denoted by [u,X] and the space of smooth sections of E is
denoted by Γ(E).

The principal bundle of positive linear frames of M will be denoted by

PGL+
n
→M

Let
Ξ : G̃L+

n → GL+
n

denotes the universal covering of GL+
n .

De�nition 15 (Spin structure). A spin structure on an n-dimensional manifold M is given by a

principal G̃L+
n -bundle P

G̃L+
n

M together with a projection :

Θ : P
G̃L+

n

M → PGL+
n
M

making the diagram :

G̃L+
n P

G̃L+
n

M

M

GL+
n PGL+

n
M

Ξ

a7→ũa

Θ

A 7→Θ(ũ)A

commutes for each ũ ∈ P
G̃L+

n

M .

Equivalently, Θ is �bre preserving and satis�es Θ(ũa) = Θ(ũ)Ξ(a), for all ũ ∈ P
G̃L+

n

M and

a ∈ G̃L+
n .
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De�nition 16 (Spinorial metric). A spinorial metric in a Riemannian manifold (M, g) of dimension
n is given by a principal Spinn-bundle PSpinnM together with a projection

θ : PSpinnM → PSOnM

making the diagram :

Spinn PSpinnM

M

SOn PSOnM

a7→ũa

ξ θ

A 7→θ(ũ)A

commutes for each ũ ∈ PSpinnM

The spinorial metric is said to be subordinated to a spin structure P if PSpinnM is a reduction

to Spinn of the G̃L+
n -principal bundle P

G̃L+
n

M .

Proposition 17. On a manifold endowed with a spin structure, each Riemannian metric gives rise
to a spinorial metric.

Proof. The Riemannian metric g on M determines the subbundle PSOnM inside PGL+
n
M (among

all the bases of TxM , we only keep the orthonormal ones for g). Since the group Spinn is the inverse

image of SOn in G̃L+
n under Ξ, the inverse image of PSOnM is a Spinn-principal bundle, which

determines the associated spinorial metric.

By Proposition 17, it is natural to give up the not so widely used term spinorial metric for the
ore classical term, in the context of Riemannian geometry, of a spin manifold.

De�nition 18 (Spinor bundle). To Spinn, we associate a vector complex bundle ΣM = PSpinn ×ρn
Σn, called the spinor bundle.

Consider now a Riemannian metric g on M , and let PSOnM be the principal SOn-bundle of
positive g-orthonormal frames over M . We denote by ι the representation of SOn on Cln obtained
by extending every linear map A : Rn → Rn of SOn to an algebra morphism of Cln. We denote by
Cl(M) the vector bundle associated to PSOnM for the representation ι, that is

Cl(M) = PSOnM ×ι Cln

Recall that Cl(M) (which is called the Cli�ord bundle of (M, g)) is the set of equivalence classes
[u, a] of pairs u ∈ PSOnM,a ∈ Cln, with respect to the equivalence relation [u, a] = [uA, ι(A−1)(a)],
for all A ∈ SOn.

The equivariance of θ shows that there exists a representation of C∞(M)-algebras

Cl(M)→ End(ΣM)

given by [u, a] ([ũ, ψ]) = [ũ, ρn(a)ψ] for each ũ ∈ PSpinnM,u = θ(ũ) ∈ PSOnM,a ∈ Cln and ψ ∈ Σn.
The action of Cl(M) on ΣM is called the Cli�ord product and is denoted by

(σ, ψ) 7→ σ · ψ

Local sections of ΣM are called spinor �elds.
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1.5 The Dirac operator

Let ∇ be the Levi-Civita connection acting on section of ΣM . The morphism γ|T ∗M⊗ΣM , denoted
by the same letter γ, where

γ : Cl(M)⊗ ΣM →M

σ ⊗ ψ 7→ σ · ψ

is the pointwise Cli�ord multiplication.

De�nition 19 (Dirac operator). The Dirac operator is the �rst-order di�erential operator acting
on sections of the spinor bundles, given by

D := γ ◦ ∇

Locally, on an open set U ⊂M , we get :

D : Γ(ΣM) Γ(T ∗M ⊗ ΣM) Γ(ΣM)

ψ
n∑
i=1
e∗i ⊗∇eiψ

n∑
i=1
ei · ∇eiψ

∇ γ

where {e1, . . . , en} ∈ ΓU (PSOnM) is a local orthonormal frame of the tangent bundle and
{e∗1, . . . , e∗n} the dual frame.

Examples. 1. For M = Rn, ΣRn = Rn × CN , where N = 2b
n
2 c.

Every spinor can be seen as a map Ψ : Rn → CN . Indeed , sinceM = Rn, and Σn is a complex
vector space of dimension N , so Σn = CN , and PSpinnM = Rn, then ΣM = PSpinn ×ρ Σn =
Rn × CN , where ρ is the standard representation ρ : Rn → GL(CN ) = GLN (C)

So if Ψ ∈ Γ(ΣM), then

Ψ : Rn → Rn × CN

x 7→ [x, vx]

satisfying [xy, vx] = [x, ρ(y−1)vx], and Ψ is entirely determined by x 7→ vx.

The Dirac operator is given by

D =
n∑
i=1

ei · ∂i
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and acts on di�erentiable maps from Rn to CN , where ∂i = ∇ei . Then

D2 =

(
n∑
i=1

ei∂i

) n∑
j=1

ej∂j

 =
∑

1≤i,j≤n
ei · ej∂i∂j

= −
n∑
i=1

∂2
i +

∑
1≤i<j≤n

ei · ej∂i∂j +
∑

1≤i>j≤n
ei · ej∂i∂j

= −
n∑
i=1

∂2
i +

∑
1≤i<j≤n

ei · ej∂i∂j +
∑

1≤i<j≤n
ej · ei∂j∂i

= −
n∑
i=1

∂2
i +

∑
1≤i<j≤n

ei · ej (∂i∂j − ∂j∂i) = −
n∑
i=1

∂2
i

=


∆

. . .

∆


2. In the particular case where M = R2, we have the Cli�ord algebra Cl2 = M2(C), the complex

volume element is ωC = ie1 · e2 and one can identify the spinor bundle Σ2 = Σ+
2 ⊕Σ−2 = C⊕C

with
Σ+

2 = spanC(e1 + ie2) and Σ−2 = spanC(1− ie1 · e2)(
check that χ(ωC)(e1 + ie2) = e1 + ie2 and χ(ωC)(1− ie1 · e2) = −(1− ie1 · e2)

)
.

Then each spinor �eld Ψ ∈ Γ(ΣM) is given by two complex functions f, g : R2 → C, such that

Ψ = (e1 + ie2)f + (1− ie1 · e2)g

The Dirac operator acting on Ψ is then

DΨ = (e1∂1 + e2∂2) [(e1 + ie2)f + (1− ie1 · e2)g]

= e1 · e1∂1f + ie1 · e2∂1f + e2 · e1∂2f + ie2 · e2∂2f

+ e1∂1g + e2∂2g − ie1 · e1 · e2∂1g − ie2 · e1 · e2∂2g

= −∂1f + ie1 · e2∂1f − e1 · e2∂2f − i∂2f + e1∂1g + e2∂2g + i2∂1g − ie1∂2g

= − (∂1 + i∂2)
(

(1− ie1 · e2)f
)

+ (∂1 − i∂2)
(

(e1 + ie2)g
)

Let ∂z = 1
2(∂1 − i∂2) and ∂z = 1

2(∂1 + i∂2). Then

DΨ = 2
(
−∂z

(
(1− ie1 · e2)f

)
+ ∂z

(
(e1 + ie2)g

))
That is, in the basis {e1 + ie2, 1− ie1 · e2} of Σ2

D =

 0 2∂z

−2∂z 0


Hence, the Dirac operator D can be considered as a generalization of the Cauchy-Riemann
operator.
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2 The Dirac operator on homogeneous spaces

2.1 Homogeneous spaces

Let us �rst give some result about homogeneous spaces, which will help us in our study of the Dirac
operator, and more speci�cally about symmetric spaces. The main idea is to use the speci�c structure
of homogeneous spaces and Frobenius reciprocity to narrow the computation of the eigenvalues on
D-invariant subspaces. Also, we will see, as noted before, that the spin structures and the bundle
PSpinn are more easy to work with, since the latter can be identi�ed to more practical spaces, and
the former to lifts of the isotropy representation.

Theorem 20 (Cartan). A Riemannian manifold (M, gM ) is a symmetric space if and only if there
exists a triple (G,H, σ) satisfying the following conditions :

1. G is a connected Lie group, H is a compact subgroup ofG, and σ is an involutive automorphism
of G such that

Gσe ⊂ H ⊂ Gσ

where Gσ is the group {g ∈ G, σ(g) = g} and Gσe is the connected component of the identity
in Gσ.

2. There exists a G-invariant metric gG�H
on G�H such that

(
G�H, gG�H

)
is isometric to (M, gM ).

In the following, any symmetric space (M, gM ) will be identi�ed with the corresponding homo-

geneous space
(
G�H, gG�H

)
by means of the isometry

ι :
(
G�H, gG�H

)
→ (M ; gM )

The neutral element in G will be denoted e, the equivalence class in G�H of any g ∈ G by [g].
The same notation Lg will be used to denote the left action of g ∈ G of G and the induced action

in the quotient G�H.
Now let's see what happens in the corresponding Lie algebras. We consider a compact and simply

connected symmetric space (M, gM ), together with the corresponding triple (G,H, σ) satisfying the
conditions of theorem 20.

Let g (resp. h) be the Lie algebra of G (resp. H). The tangent map of ι at the point [e] gives
an isometry :

T[e]
G�H '

(
g�h, gG�H,[e]

) T[e]ι−−→ (TpM, gM,p)

Now the structure of symmetric space of (M, gM ) provides an AdG(H)-invariant subspace p of g
which complements h in g. Indeed, let σ∗ be the tangent map at e of the involutive automorphism
σ. It is a Lie algebra automorphism of G such that σ2

∗ = Idg. Since H = Gσe , one has :

h = {X ∈ g;σ∗(X) = X}

Thus the decomposition g into eigenspaces is g = h⊕ p, with p = {X ∈ g;σ∗(X) = −X}.
It follows from the condition H = Gσe that p is an AdG(H)-invariant subspace of g :

σ∗(Adg(h)X) =
d

dt

(
σ(h exp(tX)h−1)

)
t=0

=
d

dt

(
hσ(exp(tX))h−1

)
t=0

since H = Gσe

=
d

dt

(
h exp(tσ∗(X))h−1

)
t=0

=
d

dt

(
h exp(−tX)h−1

)
t=0

= −AdG(h)(X)
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We �x now an orthonormal basis {X1, . . . , Xn} of p. It allows us to identify p with Rn, and
denote by Φ the isometry

Φ : p→ T[e]
G�H

X 7→ d

dt

(
[exp(tX]

)
t=0

In the following, for simplicity, we denote by α the homomorphism :

α : H → SOn

h 7→ Adg(h)|p

Proposition 21. Let PSOnM be the bundle of positive orthonormal frames ofM . Let π : G→ G�H
be the canonical principal bundle over G�H with structural space group H. Consider the associated
SOn-principal bundle given by G ×α SOn. Then the principal bundles PSOn and G ×α SOn are
isomorphic.

Proof. Let [g] be some element in G�H and let b[g] be a positive orthonormal frame at [g], that is an

isometry Rn → T[g]

(
G�H

)
preserving the orientation. Let g be a representative of [g], and denote

by Lg∗ the tangent map at the point p := [e] of Lg. Consider the map ug : Rn → Rn ' p de�ned by
:

ug := Φ−1 ◦ L−1
g∗ ◦ b[g] (9)

that is

ug : Rn
b[g]−−→ T[g]

G�H
L−1
g∗−−→ T[e]

G�H
Φ−1

−−→ p ' Rn

Since ug is an isometry preserving the orientation of Rn, ug belongs to SOn. Furthermore, for
any h ∈ H, we have :

ugh = Φ−1 ◦ (Lgh∗)
−1 ◦ b[gh]

= Φ−1 ◦ L−1
h∗ ◦ L

−1
g∗ ◦ b[g]

= Φ−1 ◦ L−1
h∗ ◦ Φ ◦ Φ−1 ◦ L−1

g∗ ◦ b[g]
= Φ−1 ◦ L−1

h∗ ◦ Φ︸ ︷︷ ︸
=α(h−1)

◦ u[g]

Hence, the element [g, ug] in the �bre of G×α SOn at [g] depends only in the equivalence class
[g] of g. The map :

PSOnM → G×α SOn
b[g] 7→ [g, ug]

gives the claimed SOn-isomorphism between PSOnM and G ×α SOn (the inverse map is given by
[g, u]→ Lg∗ ◦ Φ ◦ u, where (g, u) ∈ G× SOn is a representative of [g, u]).

Consider the vector bundle associated with the principal bundle π : G → G�H by the linear
representation α : H → SOn ⊂ GLn, that is G×α Rn.

Proposition 22. The vector bundle TM and G×α Rn are isomorphic.
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Proof. The tangent bundle TM is the vector bundle associated to PSOnM by the standard linear
representation PSOnM ×ρ Rn.

Let [g] be an element in G�H and [b[g], x] an element in the �bre of PSOnM ×ρRn over [g], where
b[g] is a positive orthonormal frame at [g], and x ∈ Rn. We can see that the element [g, ug(x)] of the
�bre of G ×α Rn at [g], where ug is the isometry of Rn de�ned previously (9), depends only in the
equivalence class [b[g], x] and the map

PSOnM ×ρ Rn → G×α Rn

[b[g], x] 7→ [g, ug(x)]

is the claimed isomorphism between the two vector bundles. The inverse map is given by

[g, x] 7→ [Lg∗ ◦ Φ, x]

where (g, x) ∈ G× Rn is a representative of [g, x].

Theorem 23. Let M = G�H be a compact, simply connected irreducible symmetric space, with
corresponding triple (G,H, σ) satisfying the conditions of Theorem 20. Then, M admits a spin
structure if and only if the homomorphism

α : H → SOn

h 7→ AdG(h)|p

lifts to a homomorphism α̃ : H → Spinn such that the diagram

Spinn

H SOn

ξα̃

α

commutes.

In this case, the spin structure is G-invariant.

Proof. First, the condition is su�cient. Suppose α lifts to α̃ : H → SOn. Let PSpinnM be the prin-

cipal bundle over M with structural group Spinn, associated with the principal bundle (G, π,G�H)
by the homomorphism α̃, that is :

PSpinnM = G×α̃ Spinn

and let ξM be the map :

ξM : PSpinnM = G×α̃ Spinn → G×α SOn ' PSOnM
[g, u] 7→ [g, ξ(u)]

We can see that (PSpinnM, ξM ) is a spin structure on M . Furthermore this spin structure is
G-invariant since the left action of the group G on PSpinnM given by

g0 · [g, u] = [g0g, u]

and the right action of the group Spinn on PSpinnM given by

[g, u] · u0 = [g, uu0]

clearly commutes.
Finally, the condition is necessary. Suppose there exists a spin structure (PSpinnM, ξM ) on

M = G�H. First, as G is supposed to be simply connected, the monodromy principle allows us to
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lift the action of G on PSOnM to a G-action on PSpinnM which commutes with the right action of
Spinn on PSpinnM .

The induced action of H on PSpinnM stabilizes the �bre (PSpinnM)[e] of PSpinnM at the point

[e]. Let b̃[e] be a �xed element in (PSpinnM)[e]. For any h ∈ H, denote by h · b̃[e], the action of h on

b̃[e].
Then de�ne α̃(h) ∈ Spinn by the relations

h · b̃[e] = b̃[e] · α̃(h)

We now check that α̃ is an a homomorphism H → Spinn which is a lift of α.

b̃[e] · α̃(hh′) = hh′ · b̃[e]
= h · b̃[e] · α̃(h′) = b̃[e] · α̃(h) · α̃(h′)

So α̃(hh′) = α̃(h)α̃(h′) It is a lift by de�nition (since we have lift the action of G on PSOnM) and
we have

PSpinnM ' G×α̃ Spinn

Proposition 24. Let ρn : Spinn → GL(Σn) be the spinor representation. Consider the vector

bundle associated to (G, π,G�H) by the representation

ρ̃n := ρn ◦ α̃

that is G×ρ̃n Σn. Then the spinor bundle ΣM is isomorphic to G×ρ̃n Σn.

Proof. The proof is analogous to that of Proposition 22. By de�nition 18, the spinor bundle ΣM is
the associated bundle PSpinnM ×ρn Σn. Let [g] be an element in G�H and [̃b[g], ψ] an element in the

�bre PSpinnM ×ρn Σn over [g], where b̃[g] is an element of the �bre PSpinnM over [g] and ψ ∈ Σn.

But b̃[g] has the form [g, u] where g is a representative of [g] and u ∈ Spinn. Now it is straight-
forward that the element [g, ρn(u)ψ] of the �bre of G×ρ̃n Σn at [g] depends only on the equivalence
class

[
[g, u], ψ

]
. Indeed, in one hand, if we consider

[
[gh, α̃(h−1)u], ψ

]
∈ PSpinnM ×ρ̃n Σn, one has :[

gh, ρn(α̃(h−1)u).ψ
]

=
[
gh, ρn(α̃(h−1))ρn(u).ψ

]
=
[
gh, (ρ̃n(h−1))ρn(u).ψ

]
=
[
g, ρn(u)ψ

]
In the other hand, if we consider

[
[g, uα̃(h−1)], ρ̃n(h)ψ

]
, one has :[

g, ρn
(
uα̃(h−1)

)
(ρ̃n(h)ψ)

]
=
[
g, ρn

(
uα̃(h−1)

)
(ρn(α̃(h))ψ)

]
=
[
g, ρn

(
uα̃(h−1)α̃(h)

)
ψ
]

=
[
g, ρn(u)ψ

]
The map

PSpinnM ×ρn Σn → X ×ρ̃n Σn[
[g, u], ψ

]
7→
[
g, ρn(u)ψ

]
is the claimed isomorphism between the two vector bundles. The inverse map is given by

[g, ψ] 7→
[
[g, e], ψ

]
for g ∈ G,ψ ∈ Σn.
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Proposition 25. Let C∞H (G,Σn) be the space of H-equivariant smooth functions G→ Σn, that is,
the set of functions f : G→ Σn satisfying

f(gh) = ρ̃n(h−1)f(g)

The space Γ(ΣM) of smooth sections of the bundle ΣM is isomorphic to the space C∞H (G,Σn).

This means that a spinor �eld Ψ ∈ Γ(ΣM) can be see as a H-equivariant function Ψ : G→ Σn.

Proof. The proof is very similar to that of the previous proposition. The H-equivariant functions
fΨ corresponding to a spinor �eld Ψ is de�ned by

Ψ([g]) = [g, fΨ(g)]

2.2 A general formula for the Dirac operator

In [2], C. Bär gives several important results about the Dirac operator among which an explicit
general formula written in theorem 26, which will be used later to compute explicitly the eigenvalues
on some examples of homogeneous spaces.

For X,Y ∈ g, let [X,Y ]p be the p-component of [X,Y ]. We de�ne

αijk :=
1

4

(〈
[Xi, Xj ]p, Xk

〉
+
〈
[Xj , Xk]p, Xi

〉
+
〈
[Xk, Xi]p, Xj

〉)
βi :=

1

2

n∑
j=1

〈
[Xj , Xi]p, Xj

〉
Recall that {X1, · · · , Xn} is an orthonormal basis of p. From Proposition 25, we see that spinor
�elds are given by ρ̃n-equivariant maps f : G→ Σn. More precisely, the spinor �eld Ψ corresponding
to f is given by Ψ([g]) = [g, f(g)].

Let {E1, . . . , En} be the standard basis of Rn.

Theorem 26. For the Dirac operator, we have the formula :

D[g,Ψ(g)]|g=g0 =

[
g0,

n∑
k=1

Ek ·Xk|g0(Ψ) +

 n∑
i=1

βiEi +
∑

1≤i<j<k≤n
αijkEi · Ej · Ek

 ·Ψ(g0)

]

Proof. Recall that D = γ ◦ ∇.
Let X ∈ p, X = Φ(x) ∈ TpM(= T[e]

G�H), g0 ∈ G. We choose Λ(t) ∈ Spinn such that

Λ(0) = 1Spinn and the curve t 7→ [etX ,Λ(t)] is horizontal with respect to the distribution coming
from the Levi-Civita connection (See Appendix B about horizontal tangent vectors). Since this
distribution is invariant under the action ofG on PSpinnM(= G×α̃Spinn), the curve t 7→ [g0e

tX ,Λ(t)]
is also horizontal.

Therefore the horizontal lift (dg0 ·X)Spin of dg0 ·X ∈ Tg0M to PSpinnM is given by

(
dg0 ·X

)Spin
([g0, 1Spinn ]) =

d

dt

[
g0e

tX ,Λ(t)
]
|t=0

and the horizontal lift (dg0 ·X)SO of dg0 ·X ∈ Tg0M to PSOnM(= G×α SOn) is given by

(dg0 ·X)SO
(
[g0, b0]

)
=

d

dt

[
g0e

tX , b0(ξ · Λ(t))
]
|t=0

24



Let [g] 7→ [g,Ψ(g)] ∼= [[g,Λ], σ(g,Λ)] be a spinor �eld, where ∼= denotes the isomorphism between
G×ρ̃n Σn and PSpinnM ×ρn Σn(= ΣM), and Ψ and σ are related by :

Ψ(g) = σ(g, 1Spin)

σ(g,Λ) = ρn(Λ−1)Ψ(g) , g ∈ G,Λ ∈ Spinn

We calculate now ∇Σ
dg0·X

where ∇Σ is the spinor connection induced by the Levi-Civita connec-

tion (see 17 in Appendix B.2).

∇Σ
dg0·X

[[g,Λ], σ(g,Λ)] =
[
[g0, 1Spin],

(
dg0 ·X

)Spin|[g0,1](σ)
]

∼=
[
g0,
(
dg0 ·X

)Spin|[g0,1](σ)
]

(
dg0 ·X

)Spin |[g0,1](σ) =
d

dt
σ
(
g0e

tX ,Λ(t)
)
|t=0

=
d

dt
ρ
(
Λ(t)−1

)
·Ψ(g0e

tX)|t=0

= −ρ∗(Λ̇(0))Ψ(g0) + dLg0X(Ψ)

= −ρ∗(Λ̇(0))Ψ(g0) +X|g0(Ψ)

Now, we have to calculate Λ̇(0). We know that the curve t → [etX ,Θ · Λ(t)] is horizontal in
PSOnM , so we get :

∇
dt

[
etX ,

(
Θ · Λ(t)

)]
|t=0 = 0

But we have also (by the proof of Proposition 21)

∇
dt

[
etX ,

(
Θ · Λ(t)

)]
|t=0 =

∇
dt

(
detX .b0.Θ(Λ(t))

)
|t=0

= db0 ·
(

Θ∗ · Λ̇(0)
)

+
∇
dt

(
detX · b0

)
|t=0

where b0 denotes the mapping from SOn to PSOnM given by multiplication by b0, and db0
denotes its di�erential which is an isomorphism form so(n) to the vertical subspace of Tb0PSonM ,

detX denotes the di�erential of the left action of G on TpM by left multiplication (here we take
t = 0, so etX = p), so (detX · b0) ∈ PSonM .

Therefore, we have an expression for Λ̇(0)

Λ̇(0) = −Θ−1
∗ · (db0)−1∇

dt
(detX · b0)|t=0

Let's compute this equation step by step. First, let c(s) be an integral curve for Xi in M . Then

∇
dt
detX · c′(0)|t=0 =

∇
∂t

∂

∂s
etX · c(s)|t=s=0

=
∇
∂s

∂

∂t
etX · c(s)|t=s=0

=
∇
∂s
X(c(s))|s=0

= ∇Xi
X =

n∑
j=1

〈∇Xi
X,Xj〉Xj

=
n∑
j=1

cji(X)Xj
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where

cji(X) =
1

2

(
−
〈

[Xi, X]p, Xj

〉
+
〈

[Xj , Xi]p, X
〉

+
〈

[Xj , X]p, Xi

〉)
Now, for a matrix A = (aij) ∈ son we have

db0 ·A =
d

dt
b0 · etA|t=0

=
d

dt
b0 · (1 + t ·A+O(t2))|t=0 = b0 ·A

= (X1, · · · , Xn) ·A =

∑
j

aj1 ·Xj , . . . ,
∑
j

ajnXj


Thus (db0)−1∇

dt

(
detX · b0

)
|t=0 = (cij(X)) ∈ son and therefore

Λ̇(0) = −Θ−1
∗ (cij(X)) =

1

4

∑
i,j

cij(X)Ei · Ej ∈ spinn

the factor 1
4 coming from the fact that Spinn is a double covering of SOn.

Now that we have the result for Λ̇(0), putting it in ∇Σ
dg0·X

, we get :

∇Σ
dg0·X

[g,Ψ(g)] =

g0, X|g0(Ψ)− ρ∗

(
1

4

∑
ij

cij(X)Ei · Ej

)
·Ψ(g0)


=

g0, X|g0(Ψ)− 1

4

∑
ij

cij(X)Ei · Ej ·Ψ(g0)


In the last line, we omit ρ∗, seeing the element Ei · Ej of spin(n) as the element Ei · Ej ∈ Cln.

Now that we have an expression for ∇Σ, we calculate the formula for the Dirac operator. By
de�nition, we have :

D[g,Ψ(g)]|g=g0 =
n∑
k=1

(dg0 ·Xk) · ∇Σ
dg0·Xk

[g,Ψ(g)]

=

g0,
n∑
k=1

Ek ·
(
Xk|g0(Ψ)− 1

4

∑
i,j

cij(Xk)Ei · Ej ·Ψ(g0)
)

We can see that for i 6= j, cij(X) = −cji(X) and for all i, cii(X) = 0. So

cij(X)Ei · Ej + cji(X)Ej · Ei = 2cijEi · Ej

since Ei · Ej = −Ej · Ei. Putting all this together, we have :

−1

4

∑
i,j

cij(Xk)Ei · Ej ·Ψ(g0) = −1

2

∑
1≤i<j≤n

cij(Xk)Ei · Ej ·Ψ(g0)

and

D[g,Ψ(g)]|g=g0 =

g0,

n∑
k=1

Ek ·Xk|g0(Ψ) +

n∑
k=1

Ek ·

(− 1

2

) ∑
1≤i<j≤n

cij(Xk)Ei · Ej ·Ψ(g0)
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We denote cijk = cij(Xk). Then, we have

n∑
k=1

Ek ·

−1

2

∑
i<j

cijkEi · Ej

 = −1

2

( ∑
k<i<j

cijkEk · Ei · Ej +
∑
i<j

ciji(−Ej) +
∑
i<k<j

cijk(−Ei · Ek · Ej)

+
∑
i<j

cijjEi +
∑
i<j<k

cijkEi · Ej · Ek

)

= −1

2

 ∑
i<j<k

(cjki − cikj + cijk)Ei · Ej · Ek +
∑
i 6=j

cijjEj


But we see

cijj =
1

2

(
−
〈

[Xj , Xj ]p, Xi

〉
+
〈

[Xi, Xj ]p, Xj

〉
+
〈

[Xi, Xj ]p, Xj

〉)
=
〈

[Xi, Xj ]p, Xj

〉
So

βi =
1

2

n∑
j=1

〈[Xj , Xi]p, Xj〉 = −1

2

n∑
j=1

cijj

By the same calculus, we have

cjki − cikj + cijk =
1

2

(〈
[Xi, Xj ]p, Xk

〉
+
〈

[Xj , Xk]p, Xi

〉
+
〈

[Xk, Xi]p, Xj

〉)
= 2αijk

The X became X by the isomorphism between p and TpM , and since we take the scalar product,
we have 〈X,Y 〉 = 〈X,Y 〉

So, taking all the results together, it gives

D[g,Ψ(g)]|g=g0 =

g0,
n∑
k=1

Ek ·Xk|g0(Ψ) +

 n∑
i=1

βiEi +
∑

1≤i<j<k≤n
αijkEi · Ej · Ek

 ·Ψ(g0)



As remarkable as this explicit formula is, we will not use it on a random spinor �eld. We will
rather focus on the decomposition of Γ(ΣM) into D-invariant subspaces, given in Proposition 29,
which will make the computations in the next subsections easier.

De�nition 27. We denote by Ĝ the set of equivalence classes of unitary irreducible �nite dimensional
complex representation of G. Any representative of Ĝ is denoted by (ργ , Vγ).

Theorem 28 (Frobenius reciprocity). The unitary representation splits into the Hilbert sum

L2
H(G,Σn) = ⊕

γ∈Ĝ
(Vγ ⊗HomH(Vγ ,Σn)) (10)

Proposition 29. The Dirac operator D leaves invariant the space Vγ ⊗HomH(Vγ ,Σn), and

DVγ⊗HomH(Vγ ,Σn) = Id⊗Dγ

where

Dγ : HomH(Vγ ,Σn)→ HomH(Vγ ,Σn)

A 7→ −
n∑
k=1

Ek ·A · (ργ)∗(Xk) +

 n∑
i=1

βiEi +
∑

1≤i<j<k≤n
αijkEi · Ej · Ek

 ·A
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Proof. Let v ⊗A ∈ (Vγ ⊗HomH(Vγ ,Σn)). For more clarity, let

L :=
n∑
i=1

βiEi +
∑

1≤i<j<k≤n
αijkEi · Ej · Ek

and let

Ψ : M → Σn

[g] 7→ Aργ(g−1)v

From Theorem 26, we know that

D[g,Ψ(g)]|g=g0 =

[
g0,

n∑
k=1

Ek ·Xk|g0(Ψ) + L ·Ψ(g0)

]

We have

Xk|g0(Ψ) =
d

dt
Ψ
(
g0e

tXk
)
|t=0

=
d

dt
Aργ

(
e−tXkg−1

0

)
v|t=0

= −A(ργ)∗(Xk)ργ(g−1
0 )v

Moreover, L ·Ψ(g0) = L ·Aργ(g−1
0 )v.

So we have :

D[g,Ψ(g)]|g=g0 =

[
g0,

(
−

n∑
k=1

Ek ·A(ργ)∗(Xk) + L ·A

)
ργ(g−1

0 )v

]

Thus, we see that

DA =

(
−

n∑
k=1

Ek ·A(ργ)∗(Xk) + L ·A

)
which is exactly the proposition.

2.3 Spectrum on quotient of the 3-sphere

2.3.1 On the Berger sphere S3(T ).

Let's apply the results obtained previously on concrete examples, namely on quotient of the 3-sphere.
In the spirit of Theorem 28 and Proposition 29, the work now is to �nd the irreducible representations
of the subgroup H in order to determine the subspaces HomH(Vγ ,Σn), and to compute the Dirac
operator on those spaces.

Consider the group SU2, which have a double role in the following : it is the group G in the
space M = G�H, and it is also the spin group Spin3 = SU2 (see section 1.2). We take H �nite, so
h = 0 and g = p = su2

We de�ne the inner product on p by declaring the basis

X1 =

0 i

i 0

 X2 =

0 −1

1 0

 X3 =
1

T

i 0

0 −i

 (11)
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to be orthonormal, where T > 0 is a �xed parameter. The Lie algebra structure is given by

[X1, X2] = 2TX3, [X2, X3] =
2

T
X1, [X3, X1] =

2

T
X2

By de�nition of βi and αijk, we have

β1 = β2 = β3 = 0 and α123 =
T

2
+

1

T

The spinor space Σ3 is a 2-dimensional complex vector space (2b
3
2c = 2). We choose a basis {Z1, Z2}

of Σ3 such that the Cli�ord multiplication by the standard basis of R3 is given by the following
matrices :

E1 =

0 i

i 0

 E2 =

0 −1

1 0

 E3 =

i 0

0 −i


with E1E2E3 = 1. It means that, if z = (z1, z2) ∈ Σ3 (in the basis {Z1, Z2}), then ρ(ei)(z) = Ei · z

The irreducible unitary representations of SU2 are given by (πn, Vn) where Vn is the vector space
of all complex homogeneous polynomials P of degree n in two variables z1, z2. The group SU2 acts
via

πn(g)P (z) = P (zg)

for P ∈ Vn, g ∈ SU2 and z = (z1, z2). We will use the polynomials Pk = zn−k1 zk2 , with k = 0, . . . , n
as a basis of Vn.

We start by considering the case that H is trivial. Then M = SU2 is di�eomorphic to S3, and
we denote the resulting homogeneous Riemannian manifold by S3(T ). We will calculate Dn which
is acting on Hom(Vn,Σ3). From Proposition 29, since β1 = β2 = β3 = 0 and α123 = T

2 + 1
T , we have

DnA = −
n∑
k=1

Ek ·A · (πn)∗(Xk)−
(
T

2
+

1

T

)
A

Since the term
(
T
2 + 1

T

)
only shift the spectrum, we will focus on the operator

D′nA = −
n∑
k=1

Ek ·A · (πn)∗(Xk)

First of all, let's calculate the endomorphisms (πn)∗(Xk).

(πn∗(X1)Pk) (z) =

(
d

ds
(id+ sX1)Pk|s=0

)
(z)

=
d

ds
Pk

(z1, z2)

 1 is

is 1

 |s=0

=
d

ds
(z1 + isz2)n−k(isz1 + z2)k|s=0

= i(n− k)zn−k−1
1 zk+1

2 + ikzn−k+1
1 zk−1

2

= i(n− k)Pk+1(z) + ikPk−1(z)

So we have :
(πn∗(X1)Pk) (z) = i(n− k)Pk+1(z) + ikPk−1(z) (12)
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Therefore, we can represent πn∗(X1) by the matrix

πn∗(X1) = i



0 1 0

n 0 2 0

0 n− 1 0
. . .

. . .
. . .

. . .

0
. . .

. . . n

1 0


By the same calculus, we �nd

πn∗(X2) =



0 −1 0

n 0 −2 0

0 n− 1 0
. . .

. . .
. . .

. . .

0
. . .

. . . −n

1 0


and

πn∗(X3) =
i

T



n

n− 2 0

. . .

0
. . .

−n


Now that we have a formula for (πn)∗(Xk), let's �nish the computation of D′nA.
Since Vn and Σ3 are complex vector spaces of dimension n+ 1 and 2 respectively, Hom(Vn,Σ3)

is a complex vector space of dimension 2(n+ 1), for which we consider the following basis :

Ak(Pl) =


Z1 if k = l, k even

Z2 if k = l, k odd

0 otherwise

Bk(Pl) =


Z1 if k = l, k odd

Z2 if k = l, k even

0 otherwise

for k = 0, · · · , n
We will compute D′nAk and D′nBk, for k even and k odd separately.

� For k even, we get by equation (12) :

E1 ·Ak · (πn)∗(X1)(Pl) = E1 ·Ak (i(n− l)Pl+1 + ilPl−1)
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By de�nition of Ak, the only l for which this computation is non zero are l = k ± 1. So we
have for l = k − 1 odd

E1 ·Ak · (πn)∗(X1)(Pk−1) = E1 ·Ak (i(n− k + 1)Pk + i(k − 1)Pk−2)

= E1 ·Ak (i(n− k + 1)Pk) = i(n− k + 1)E1 · Z1

= i(n− k + 1)(iZ2) = (k − n− 1)Z2 = (k − n− 1)Ak−1(Pk−1)

By the same reasoning, we get for l = k + 1

E1 ·Ak · (πn)∗(X1)(Pk+1) = −(k + 1)Z2 = −(k + 1)Ak+1)(Pk+1

so, considering Ak = 0 for k < 0 and k > n, we have

E1 ·Ak · (πn)∗(X1) = (k − n− 1)Ak−1 − (k + 1)Ak+1

and we also have, by the same computations

E2 ·Ak · (πn)∗(X2) = (n− k + 1)Ak−1 − (k + 1)Ak+1

E3 ·Ak · (πn)∗(X3) =
1

T
(2k − n)Ak

Therefore, putting together these results, we get

D′nAk = −
n∑
k=1

Ek ·Ak · (πn)∗(Xk) =
1

T
(n− 2k)Ak + 2(k + 1)Ak+1 (13)

� If k is odd, we obtain

E1 ·Ak · (πn)∗(X1) = (k − n− 1)Ak−1 − (k + 1)Ak+1

E2 ·Ak · (πn)∗(X2) = (k − n− 1)Ak−1 + (k + 1)Ak+1

E3 ·Ak · (πn)∗(X3) =
1

T
(n− 2k)Ak

and therefore

D′nAk = −
n∑
k=1

Ek ·Ak · (πn)∗(Xk) = 2(n+ 1− k)Ak−1 +
1

T
(2k − n)Ak (14)

Moreover, since we will have the same computations for Bk, with the cases k even and k odd
interchanged, we have

D′nBk = 2(n+ 1− k)Bk−1 +
1

T
(2k − n)Bk if k even

D′nBk =
1

T
(n− 2k)Bk + 2(k + 1)Bk+1 if k odd

Now that we have these explicit formulas for D′n, we focus on the eigenvalues.
We see that the subspace of Hom(Vn,Σ3) spanned by the Ak is D′n-invariant, as well as the

subspace spanned by the Bk.
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� Considering the endomorphism D′n on the subspace spanned by the Ak,, and with respect to
this basis, it can be represented by a block-diagonal matrix with 2× 2 blocks on the diagonal.
The 2× 2 block have the form  1

T (n− 2l) 2(n− l)

2(l + 1) 1
T (2l + 2− n)


l = 0, 2, 4, · · · ,

{
n− 1 for n odd

n− 2 for n even

In the case n even, there is one more 1 × 1 block, with entry − n
T , corresponding to (13) for

k = n :

D′nAn =
1

T
(n− 2n)An + 2(n+ 1)An+1 = −n

T
An

(Recall that there is n + 1 elements in the basis {A0, · · · , An}, so there is n + 1 lines in the
matrix corresponding to Dn).

� In the subspace spanned by the Bk, we have also a block-diagonal matrix. First, we have a
1× 1 block, with entry − n

T , corresponding to

D′nB0 = 2(n+ 1− 0)B−1 +
1

T
(0− n)B0 = −n

T
B0

Then, since the computations are the same as for Ak, we have the same 2× 2 blocks 1
T (n− 2l) 2(n− l)

2(l + 1) 1
T (2l + 2− n)


this time for

l = 1, 3, 5, · · · ,

{
n− 1 for n even

n− 2 for n odd

If n is odd, there is one more 1× 1 block with entry − n
T , corresponding to (14) with k = n :

D′nBn =
1

T
(n− 2n)Bn + 2(n+ 1)Bn+1 = −n

T
Bn

Summing everything up, we have two cases :

� For n even :

D′n =



α0

α2

. . .

αn−2

αn

β0

β1

β3

. . .

βn−1



(15)
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where

αj =

 1
T (n− 2j) 2(n− j)

2(j + 1) 1
T (2j + 2− n)

 for j = 0, 2, · · · , n− 2

αn = β0 = −n
T

βk =

 1
T (n− 2k) 2(n− k)

2(k + 1) 1
T (2k + 2− n)

 for k = 1, 3, · · · , n− 1

� For n odd :

D′n =



α0

α2

. . .

αn−1

β0

β1

β3

. . .

βn−2

βn



(16)

where

αj =

 1
T (n− 2j) 2(n− j)

2(j + 1) 1
T (2j + 2− n)

 for j = 0, 2, · · · , n− 1

β0 = βn = −n
T

βk =

 1
T (n− 2k) 2(n− k)

2(k + 1) 1
T (2k + 2− n)

 for k = 1, 3, · · · , n− 2

Seeing D′n under the form of a matrix, it is easier to compute its eigenvalues.
First, we see that in the matrices, there are two 1×1 block with entry − n

T , which give two times
the eigenvalue − n

T .
The 2× 2 block  1

T (n− 2l) 2(n− l)

2(l + 1) 1
T (2l + 2− n)


appear for l = 0, 1, 2, · · · , n− 1. The eigenvalues of this block are

λ1,2 =
1

T
±
[( 1

T 2
− 1
)

(n− 2l + 1)2 + (n+ 1)2

] 1
2

It is then easy to determine the eigenvalues of Dn, it su�ces to add the term −
(

1
T + 1

2T
)
to

obtain the eigenvalues.
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Eigenvalue Multiplicity

−n+1
T −

1
2T 2(n+ 1), n = 0, 1, 2, . . .

−1
2T ±

[(
1
T 2 − 1

)
(n− 2l + 1)2 + (n+ 1)2

] 1
2

n+ 1, n = 1, 2, . . . and l = 0, 1, . . . , n− 1

The term (n + 1) in each multiplicity comes from dim(Vn) = (n + 1). Indeed, we saw that on
Vn ⊗HomH(Vn,Σ3), we have D = Id⊗Dn. So if λ is an eigenvalue of Dn of multiplicity µ, then λ
is an eigenvalue of D of multiplicity µ dim(Vn) = µ(n+ 1).

To be more clear, let m = n+ 1 and k = l + 1. Then, we have the following theorem.

Theorem 30. On the sphere S3(T ), endowed with the metric coming from (11), the Dirac operator
D has the following eigenvalues :

−m
T
− T

2
with multiplicity 2m, for m = 1, 2, . . .

−1

2
T ±

[( 1

T 2
− 1
)

(m− 2k)2 +m2

] 1
2

with multiplicity m, for k = 1, 2, . . . ,m− 1 and
m = 2, 3, . . .

2.3.2 On lens spaces L (N,T )

We can also �nd the eigenvalues of the Dirac operator on lens spaces, that is quotient of the sphere

L = S2m−1
�Γ

where Γ is a subgroup of SO2m. A general study of the Dirac operator on those spaces can be found
in [3].

Here, we will focus on quotients of the 3-sphere of the form

L (N,T ) = S3(T )�ZN = SU2�ZN

(that is, we take H = ZN ) where the embedding of ZN in SU2 is

eit 7→

eit 0

0 e−it


Recall that we chose a basis of SU2 :

X1 =

0 i

i 0

 X2 =

0 −1

1 0

 X3 =
1

T

i 0

0 −i


We saw that the spin structures are in 1− 1 correspondence with the lifts of the homomorphism
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α : H → SOn (see Theorem 23). Take a look at the isotropy representation of ZN

AdeitX1 =

eit 0

0 e−it

0 i

i 0

e−it 0

0 eit

 =

 0 ie2it

ie−2it 0


=

 0 i cos(2t)− sin(2t)

i cos(−2t)− sin(−2t) 0

 = cos(2t)X1 + sin(2t)X2

AdeitX2 =

eit 0

0 e−it

0 −1

1 0

e−it 0

0 eit

 =

 0 −e2it

e−2it 0


=

 0 − cos(2t)− i sin(2t)

cos(−2t) + i sin(−2t) 0

 = − sin(2t)X1 + cos(2t)X2

AdeitX3 =
1

T

eit 0

0 e−it

i 0

0 −i

e−it 0

0 eit


=

1

T

i 0

0 −i

 = X3

Summing up, the isotropy representation ZN → SO(3) is given by

eit 7→


cos(2t) − sin(2t) 0

sin(2t) cos(2t) 0

0 0 1


Then, by identifying Spin3 with SU2, we can lift the isotropy representation, that is

ZN → SU2 ' Spin3

eit 7→

eit 0

0 e−it


As in the previous computations, we want to determine the space

HomZN (Vn,Σ3) ⊂ Hom(Vn,Σ3)

So we want to know how ZN acts on Vn and on Σ3. For that, we decompose the spinor representation
and the representations πn, restricted to ZN , into ZN -irreducible components.

First, the irreducible representations of ZN are

ρm : ZN → U1

z 7→ zm

Two such representations ρm and ρp are equivalent if and only if m ≡ p mod N .
Moreover, since the spinor representation of Spin3 ' SU2 is exactly the standard representation

of SU2 (since for the standard representation, the image of −Id is −Id 6= Id), we get for its restriction
to ZN the representation ρ1 ⊗ ρ−1. Indeed the standard representation of SU2 is

SU2 → GL(C2)

A 7→ A
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Then its restriction to ZN is given by :

ZN → GL(C2)

eit 7→

eit 0

0 e−it

 =

ρ1(eit) 0

0 ρ−1(eit)


So we see that the spinor representation, restricted to ZN , is ρ1 ⊗ ρ−1.

Finally, the action of ZN on Vn is

(
eit · Pk

)
(z) = Pk

(z1, z2)

eit 0

0 e−it


= Pk(e

itz1, e
−itz2) = e(n−k)itzn−k1 e−kitzk2

= e(n−2k)itPk(z) = ρn−2k(e
it)Pk(z)

Thus, ZN acts on C× Pk via ρn−2k. So, in order to calculate HomZN (Vn,Σ3), we have to �nd the
homomorphisms A : Vn → Σ3 such that

eit ·A(Pk) = A
(
eit · Pk

)ρ1(eit) 0

0 ρ−1(eit)

A(Pk) = A
(
ρn−2k(e

it)Pk
)

where the dot · in the �rst line denotes the action of eit on respectively Σ3 and Vn.
We will search such A in the basis {A0, . . . , An, B0, . . . , Bn}. By de�nition Ak(Pl) 6= 0 and

Bk(Pl) 6= 0 if and only if k = l. So we have to �nd for which k, ρ1 and ρ−1 are sent to ρn−2k, or at
least to equivalent representations.

We will start by studying the case N = 2 and then the case N ≥ 3.

The case N = 2

When N = 2, the lens space L (2, T ) = S3
�Z2

is just the real projective space RP 3. Also, the

representation ρ1 and ρ−1 are equivalent. So we just have to determine k such that n−2k ≡ 1
mod 2. But since 2k is even for all k, n− 2k ≡ 1 mod 2 if and only if n is odd.

So, if n is even, there is not any k for which n − 2k ≡ 1 mod 2 holds. It means that
HomZN (Vn,Σ3) = 0.

If n is odd, then for all k, we have n−2k ≡ 1 mod 2. So HomZN (Vn,Σ3) = Hom(Vn,Σ3).
If we look at Theorem 30, the eigenvalues of the Dirac operator on the lens space L (2, T )

are the eigenvalues with m = n+ 1 even, that is m = 2m′.

Proposition 31. The eigenvalues of the Dirac operator on the real projective space RP 3

(= L (2, T )) are

Eigenvalue Multiplicity

−2m′

T
− 1

2
T 4m′, m′ = 1, 2, . . .

−1

2
T ± 2

[( 1

T 2
− 1
)

(m′ − k)2 +m′2
] 1

2

2m′, m′ = 1, 2, . . . and k = 1, . . . , 2m′ − 1
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The case N ≥ 3

For N ≥ 3, the representations ρ1 and ρ−1 are not equivalent. We �rst focus on the subspace
spanned by the Al. For l even, we have

Al
(
eit · Pl

)
= Al

(
e(n−2l)itPl

)
= e(n−2l)itAl(Pl) = e(n−2l)itZ1

eit · Al(Pl) =

eit 0

0 e−it

Z1 = eitZ1

We see that for l even, Al is ZN -invariant if and only if n− 2l ≡ 1 mod N . By the same
calculus, we can see that for l odd, Al is ZN -invariant if and only if n− 2l ≡ −1 mod N .

In the case l even, and n− 2l ≡ 1 mod N , we have then n− 2(l + 1) ≡ −1 mod N . It
means that for l even, if Al is ZN -invariant then Al+1 also is ZN -invariant.

So, if we look back at the blocks we found in our study of the Berger sphere S3(T ) (see
(15) and (16)), a 2× 2 block αl 1

T
(n− 2l) 2(n− l)

2(l + 1) 1
T

(2l + 2− n)


will "survive" if and only if n− 2l ≡ 1 mod N , with l even, and so the Dirac operator will
admit the corresponding eigenvalues.

The 1× 1 block αn with entry − n
T
, in the case n even, survives if and only if n− 2n ≡ 1

mod N , that is n ≡ −1 mod N .
If we take m = n+ 1 and k = l+ 1 (as we did in Theorem 30), the condition for the 2× 2

blocks becomes m− 2k ≡ 0 mod N , and for the 1× 1 block m ≡ 0 mod N , m odd.

If we make the same reasoning for the subspace spanned by the Bl, then we obtain that
the 2× 2 blocks βl survives if and only if n− 2l ≡ 1 mod N , for l odd. The �rst 1× 1 block
β0 remains if n ≡ 1 mod N , and the second 1 × 1 block βn if n ≡ 1 mod N , for n odd.
Again, by setting m = n+ 1 and k = l+ 1, we have the 2× 2 blocks if m− 2k ≡ 0 mod N ,
the �rst 1× 1 block if m ≡ 0 mod N , and the second one if m ≡ 0 mod N , m even.

Finally, we get to the result. Putting everything together, we obtain that the 2×2 blocks
remain if m− 2k ≡ 0 mod N , and two 1× 1 blocks if m ≡ 0 mod N .

Proposition 32. The eigenvalues of the Dirac operator on the lens space L (N, T ) for N ≥ 3
are

Eigenvalue Multiplicity

−iN
T
− 1

2
T 2iN , with i = 1, 2, . . .

−1

2
T ± 2

[( 1

T 2
− 1
)
i2N2 +m2

] 1
2

m, with m = 2, 3, . . . and −m+ 1

N
< i ≤ m− 2

N

The case N even, N = 2N ′.

37



For N = 2N ′ even, L (N, T ) admits one more spin structure, corresponding to the lift

ZN → SU2

e
2iπq
N 7→ (−1)q

e 2iπq
N 0

0 e−
2iπq
N

 =

 e
2iπq
N e

iπqN
N 0

0e−
2iπq
N e

iπqN
N


=

e 2iπq(N′+1)
N 0

0 e
2iπq(N′−1)

N


This map is not well-de�ned if N is odd. Indeed, we have e

2iπ0
N = e

2iπN
N , but

e
2iπ0
N 7→

1 0

0 1


e

2iπN
N 7→ (−1)N

1 0

0 1

 = −

1 0

0 1


We see that ZN acts on Σ3 via ρN ′+1 ⊗ ρN ′−1. If we make the same computations as in

the previous case, we show that

� For N = 2, the eigenvalues of L (2, T ) = RP 3 are the eigenvalues of S3(T ) for m odd.

� For N = 2N ′, N ′ ≥ 2. In this case, ρN ′−1 and ρN ′+1 are not equivalent. The eigenvalues
come from the 2× 2 blocks with m− 2k ≡ N ′ mod N , and from the 1× 1 block with
m ≡ N ′ mod N .

All these results are summarized in the following theorems.

Theorem 33. The real projective space RP 3 (= L (2, T )) has exactly two spin structures.
With respect to the �rst one, the eigenvalues of the Dirac operator are

−2m′

T
− 1

2
T with multiplicity 4m′, where m′ = 1, 2, . . .

−1

2
T ± 2

[( 1

T 2
− 1
)

(m′ − k)2 +m′2
] 1

2

with multiplicity 2m′, where m′ = 1, 2, . . . and
k = 1, . . . , 2m′ − 1

With respect to the second spin structure, the eigenvalues of the Dirac operator are

−2m′ + 1

T
− 1

2
T with multiplicity 2(2m′ + 1), where

m′ = 0, 1, 2, . . .

−1

2
T ±

[( 1

T 2
− 1
)

(2m′ + 1− 2k)2 + (2m′ + 1)

] 1
2

with multiplicity 2m′ + 1, where
m′ = 1, 2, . . . and k = 1, 2, . . . , 2m′.

Theorem 34. The lens space L (N, T ), for N ≥ 3, has one spin structure, for which the
Dirac operator admits the following eigenvalues :
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−iN
T
− 1

2
T with multiplicity 2iN , where i = 1, 2, . . .

−1

2
T ±

[( 1

T 2
− 1
)
i2N2 +m2

] 1
2

with multiplicity m, where m = 2, 3, . . . and

−m+ 1

N
< i ≤ m− 2

N

If N = 2N ′ even, L (N, T ) has one more spin structure, for which the Dirac operator
admits the following eigenvalues :

−N
′ + iN

N
− 1

2
T with multiplicity 2(N ′+iN), where i = 0, 1, . . .

−1

2
T ±

(( 1

T 2
− 1
)

(N ′ + iN)2 +m2

) 1
2

with multiplicity m, where m = 2, 3, . . . and
(1−m−N ′)

N
< i ≤ (m− 2−N ′)

N
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3 Computations on more generic homogeneous spaces

In the previous section, we calculate the eigenvalues for some homogeneous spaces M =
SU2�H, with H = ZN , or with H = 0, soM = S3(T ) andM is di�eomorphic to S3. But this
computations were made with a speci�c metric, which change the eigenvalues of the Dirac
operator. In the following, we will give the eigenvalues on the n-sphere, with the induced
metric of Rn+1.

We start with a very important result about the symmetry of the set of eigenvalues of
the Dirac operator, and the determination of its spectrum by its square. The following
proposition plays a major role in the calculus that will follow.

Proposition 35. The spectrum of D is symmetric with respect to the origin. Furthermore,
it is completely determined by the spectrum of D2

Proof. Let λ be an eigenvalue of D, and Ψ a non trivial function in C∞H (G,Σn) ' Γ(ΣM)
such that DΨ = λΨ. Consider the function σ∗Ψ, where σ is the involutive automorphism of
G de�ning the symmetric structure (see Theorem 20). Since Xi ∈ p, we know that

σ
(
etXi

)
= etσ∗(Xi) = e−tXi

It follows

X̃i(σ
∗Ψ)(g) =

d

dt

(
ψ
(
σ(getXi)

))∣∣∣
t=0

=
d

dt

(
ψ
(
σ(g)σ(etXi)

))∣∣∣
t=0

=
d

dt

(
ψ
(
σ(g)e−tXi

))∣∣∣
t=0

= −X̃i(Ψ)(σ(g))

Hence
D(σ∗Ψ)(g) = −DΨ(σ(g)) = −λΨ(σ(g)) = −λσ∗Ψ(g)

So σ∗Ψ is an eigenfunction for the eigenvalue −λ. It means that the spectrum of D is
symmetric with respect to the origin.

Furthermore, by Proposition 29, D leaves invariant the space Vγ ⊗HomH(Vγ,Σn), and so
does D2. Thus we have

D2|Vγ⊗HomH(Vγ ,Σn) = Id⊗D2
γ

Thus
Spec(D2) =

⋃
γ∈Ĝ

Spec
(
D2|Vγ⊗HomH(Vγ ,Σn)

)
=
⋃
γ∈Ĝ

Spec(D2
γ)

We admit that D is a formally self-adjoint operator, so its restriction to any non-trivial
space Vγ ⊗HomH(Vγ,Σn) is a Hermitian operator on the �nite dimensional Hermitian space(

Vγ ⊗HomH(Vγ,Σn), 〈.|.〉Vγ⊗HomH(Vγ ,Σn)

)
hence, it is diagonalizable. So there exists an orthonormal basis of Vγ⊗HomH(Vγ,Σn) which
diagonalizes D|Vγ⊗HomH(Vγ ,Σn); but it also diagonalizes D2|Vγ⊗HomH(Vγ ,Σn).
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This leads to the conclusion that

Spec(D) =
⋃
γ∈Ĝ

{
±√µ;µ ∈ Spec(D2)

}

3.1 The eigenvalues on the classical spherical 3-sphere.

Theorem 36. The classical Dirac operator on the sphere Sn of constant sectional curvature
1 has the eigenvalues

±
(n

2
+ k
)
k ≤ 0

with multiplicities

2b
n
2
c
(
n+ k − 1

k

)
Proof. This computation of the eigenvalues is di�erent from the one above for S3(T ), since
here we don't have the homogeneous space structure. We will use instead Killing spinors.

A Killing spinor with Killing constant µ is a spinor �eld Ψ satisfying the equation

∇̃XΨ = ∇XΨ− µX ·Ψ = 0

for all tangent vectors X. Killing spinors are very useful in this context, because of the
following result, which we will admit :

Proposition 37. The spinor bundle ΣSn can be trivialized by Killing spinors for µ = 1
2
and

µ = −1
2
.

So, from now on, let µ = ±1
2
Now, we will prove the Lichnerowicz formula, which relates

the connection ∇̃ over the sphere to the Dirac operator :

Proposition 38.

(D + µ)2 = ∇̃ ∗ ∇̃+
1

4
(n− 1)2

Proof. Let p ∈ Sn, let {e1, . . . , en} be a local orthonormal frame near p such that ∇ei(p) = 0.
At p, we get

(D + µ)2 − ∇̃ ∗ ∇̃ =

(
n∑
i=1

ei∇ei + µ

)(
n∑
j=1

ej∇ej + µ

)
+

n∑
j=1

∇̃ej∇̃ei

=
∑

1≤i,j≤n

ei · ej∇ei∇ej + 2µD +
1

4
+

n∑
j=1

(
∇ej − µej

) (
∇ej − µej

)
=

n∑
j=1

ej · ej∇ej∇ej +
∑

1≤i<j≤n

ei · ej∇ei∇ej +
∑
i>j

ei · ej∇ei∇ej + 2µD +
1

4

+
n∑
j=1

∇ej∇ej − 2µD − 1

4
n

41



(D + µ)2 − ∇̃ ∗ ∇̃ = −
n∑
j=1

∇ej∇ej +
∑

1≤i<j≤n

eiej
(
∇ei∇ej −∇ej∇ei

)
+

n∑
j=1

∇ej∇ej +
1

4
− n

4

=
∑

1≤i<j≤n

ei · ejRΣ(ei, ej)−
n− 1

4

=
1

4

∑
1≤i<j≤n

ei · ej (ei · ej − ej · ei)−
1

4
(n− 1)

=
1

4

∑
1≤i<j≤n

2− 1

4
(n− 1)

=
1

4
n(n− 1)− 1

4
(n− 1) =

1

4
(n− 1)2

where RΣ is the curvature of the spinor bundle, and

RΣ(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] =
1

4
(Y X −XY )

The last equality comes from the constant curvature (see [4], Equation (5), p71).
Now, we choose an orthogonal basis f0 ≡ 1, f1, . . . , of the L

2-functions on Sn, L2(Sn,R),
consisting of eigenfunctions of the Laplace operator ∆ = d ∗ d, with ∆fi = λifi. We see that
fiΨj form a basis of the L2-spinor �elds L2(Sn,ΣSn), where Ψ1, . . . ,Ψ2b

n
2 c are a trivialization

of the spinor bundle by Killing spinors with Killing constant µ.
The following lemma tells us that we have found an eigenbasis for the operator (D + µ)2

Lemma 39.

(D + µ)2 (fiΨj) =

(
λi +

(n− 1)2

4

)
fiΨj

Proof. From Proposition 38, we have

(D + µ)2 (fiΨj) =

(
∇̃ ∗ ∇̃+

1

4
(n− 1)2

)
(fiΨj)

We compute

∇̃ekfiΨj = ∇ekfiΨj − µekfiΨj

= dfiΨj + fi∇ekΨj − µekfiΨj

= dfiΨj + fiµekΨj − µekfiΨj since Ψj is a Killing spinor

= dfiΨj

So
∇̃ ∗ ∇̃(fiΨj) = d2fiΨj = λifiΨj

Thus, we have

(D + µ)2 (fiΨj) =

(
λi +

(n− 1)2

4

)
fiΨj
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The eigenvalues of the Laplace operator are given in the following proposition, which we
will admit.

Proposition 40. The eigenvalues of the Laplace operator on Sn are

k(n+ k − 1), for k ≥ 0, with multiplicity mk =

(
n+ k − 1

k

)
n+ 2k − 1

n+ k − 1

This proposition leads to the following corollary

Corollary 41. (D + µ)2 has the eigenvalues

k(n+ k − 1) +
(n− 1)2

4
, for k ≥ 0, with multiplicity 2b

n
2 cmk

The next step is the calculation of the eigenvalues of D + µ. First, if an operator A has
a vector u satisfying

A2u = λ2u

then for v± = ±λu+ Au, we have

Av± = ±Aλu+ A2u = ±λAu+ λ2u = ±λ (±λu+ Au) = ±λv±

Hence, if v± 6= 0, then ±λ is an eigenvalue of A. In our case, A = D+µ. Let us �rst look
at the case k = 0, that is u = Ψj and λ = −µ(n− 1).

v+ = −µ(n− 1)Ψj + (D + µ)Ψj

= −µ(n− 1)Ψj +
n∑
i=1

ei∇eiΨj + µΨj = −µ(n− 1)Ψj +
n∑
i=1

eiµeiΨj + µΨj

= −µ(n− 1)Ψj − µΨj

n∑
i=1

1 + µΨj = −µ(n− 1)Ψj − nµΨj + µΨj

= −2µ(n− 1)Ψj

and by the same computation, v− = 0. Hence v+ 6= 0, so λ = −µ(n− 1) is an eigenvalue of

D+µ of multiplicity at least 2b
n
2 c, since it is an eigenvalue for all Ψj, j = 1, . . . , 2b

n
2 c. Since

the multiplicity of (n−1)2

4
of (D + µ)2 is 2b

n
2 c, the eigenvalue −µ(n− 1) of D + µ has exactly

multiplicity 2b
n
2 c.

Now, we look at the case k ≥ 1, that is

u = fiΨj for i ≥ 1, and λ =

√
k(n+ k − 1) +

(n− 1)2

4
= k +

n− 1

2

We know all the eigenvalues of D, namely −µn with multiplicity 2b
n
2 c (for k = 0) and the

other eigenvalues are −µ± (k + n−1
2

), for k ≥ 1, and we must determine their multiplicity.
To do this, let us recall that we may choose µ = ±1

2
. We start with µ = −1

2
. Then

−µ+(k+ n−1
2

) = k+ n
2
and −µ− (k+ n−1

2
) = 1−k− n

2
. We introduce the following notations

for the eigenvalues of D.

λ+
0 =

n

2
, λ+

k =
n

2
+ k, k ≥ 1

λ+
−k = 1− n

2
− k, k ≥ 1
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We know that the multiplicity of λ+
0 (= −µn), namely m

(
n
2

)
= 2b

n
2 c, and from the

previous corollary, we know that m
(
λ+
k

)
+m

(
λ+
−k
)

= 2b
n
2 cmk.

The same reasoning applied to µ = 1
2
gives

λ−0 =
n

2
, λ−k = −1 +

n

2
+ k, k ≥ 1

λ−−k = −n
2
− k, k ≥ 1

and m
(
−n

2

)
= 2b

n
2 c and m

(
λ−k
)

+m
(
λ−−k
)

= 2b
n
2 cmk

Proposition 42. We have for k ≥ 0

m
(
λ+
k

)
= m

(
λ−−k
)

= 2b
n
2 c
(
k + n− 1

k

)
Proof. We will prove this proposition by induction on k. We saw already that the claim is
true for k = 0. For the induction step k → k + 1 :

m
(
λ+
k+1

)
= 2b

n
2 cmk+1 −m

(
λ+
−k−1

)
= 2b

n
2 cmk+1 −m

(
λ−−k
)

(since λ+
−k−1 = λ−−k)

= 2b
n
2 cmk+1 − 2b

n
2 c
(
n+ k − 1

k

)
= 2b

n
2 c
((

n+ k

k + 1

)
n+ 2k + 1

n+ k
−
(
n+ k − 1

k

))
= 2b

n
2 c
((

n+ k

k + 1

)
n+ 2k + 1

n+ k
−
(
n+ k

k + 1

)
k + 1

n+ k

)
= 2b

n
2 c
(
n+ k

k + 1

)
and we do the same for λ−−(k+1).

Summing up everything we get :

�

n

2
is an eigenvalue of multiplicity 2

⌊
n
2

⌋
�

n

2
+ k and −n

2
− k, for k ≥ 1, are eigenvalues of multiplicity 2

⌊
n
2

⌋(
n+ k − 1

k

)
.

which is what we wanted to prove.

3.2 The eigenvalues on lens spaces.

A more general result about the eigenvalues of the Dirac operator can be given on lens spaces,
that is

M = Sn�Γ

where n = 2m− 1 is odd, and Γ ⊂ SOn+1 is a �xed point free subgroup.
The Dirac eigenvalues, according to the previous theorem, are of the form ±

(
n
2

+ k
)
. The

same holds for the lens space M , but the multiplicities will be smaller than those for Sn.
Let's compute these.
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De�nition 43. Using the same notations as before for the multiplicity, let

F+(z) =
+∞∑
k=0

m
(n

2
+ k,D

)
zk

F−(z) =
+∞∑
k=0

m
(
−n

2
− k,D

)
zk

The Theorem 36 gives the following lemma.

Lemma 44. F+(z) and F−(z) converge absolutely for |z| < 1

Now, in even dimension 2m, the complex spinor representation of Spin2m on Σ2m decom-
poses into two irreducible half spin representations (see 13) :

ρ+ : Spin2m → Aut(Σ+
2m)

ρ− : Spin2m → Aut(Σ−2m)

Let χ± : Spin2m → C be the character of ρ±. The main result is

Theorem 45. Let S
2m−1

�Γ be a spherical lens space with spin structure given by

ε : Γ→ Spin2m

Then the eigenvalue of the Dirac operator are ±
(
n
2

+ k
)
, k ≥ 0 with multiplicities determined

by

F+(z) =
1

|Γ|
∑
γ∈Γ

χ− (ε(γ))− z.χ+ (ε(γ))

det (12m − z.γ)

F−(z) =
1

|Γ|
∑
γ∈Γ

χ+ (ε(γ))− z.χ− (ε(γ))

det (12m − z.γ)

As a consequence, two lens spaces can be linked according to the power series they have,
or we can obtain information on their structure, for example if it is homogeneous. If you are
interested, read the article of S. Boldt [3].
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Conclusion

This report shows that the study of the Dirac operator and the computation of its eigenvalues
is easier on homogeneous spaces thanks to their speci�c structure : 1− 1 correspondence be-
tween spin structures and lifts of the isotropy representations, isomorphisms between PSOnM
ans G ×α SOn, between ΣM and G ×ρ̃n Σn ... As we have seen, one can have an explicit
formula of the operator, �nd the eigenvalues and, in some cases, the exact multiplicity of
each eigenvalues, or in some other cases, the multiplicities under the form of a power series.
Of course, one have to be careful of the chosen metric, which may shift the spectrum, and
change the multiplicities.

Usually, the study of the eigenvalues of the Dirac operator is much more complicated,
so one can hardly �nd the exact eigenvalues, but can determine bounds. For instance, on a
compact Riemannian manifold, we still have the Schrödinger-Lichnerowicz formula (Propo-
sition 38). So, if Dϕ = λϕ, we get

λ2〈ϕ, ϕ〉 = 〈D2ϕ, ϕ〉 =

((
∇ ∗∇+

R

4

)
ϕ, ϕ

)
= 〈∇ϕ,∇ϕ〉+

R

4
〈ϕ, ϕ〉 ≥ R

4
〈ϕ, ϕ〉

where R denotes the Riemannian curvature. So if R > S, for some positive constant S, then

λ2 ≥ S

4
〈ϕ, ϕ〉

Such bounds can sometimes be improved, depending on the manifold. For example, Hijazi
proved the following theorem for compact manifold.

Theorem 46. Let M be a compact Riemannian spin manifold of dimension n ≥ 3. Then
all Dirac eigenvalues λ of M satisfy

λ2 ≥ n

n− 1

µ1(Y )

4

where µ1(Y ) denotes the smallest eigenvalue of the Yamabe operator

Y = 4
n− 1

n− 2
∆ +R

Also, Bär gave a lower bound for the eigenvalues on S2.

Theorem 47. Let M = S2 be equipped with any Riemannian metric. Then all Dirac
eigenvalues satisfy

λ2 ≥ 4π

area(M)

Equality holds for the smallest eigenvalue if and only if M has constant curvature.

The Dirac operator is therefore the object of a great study, especially with its consequences
in physics.
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Appendices

A Principal and associated bundles

A.1 Principal bundles

This introduction to principal bundles is taken from [5], Appendix A, p370.
Let X be a paracompact Hausdor� space and G a topological space. A principal G-bundle

P over X is essentially a bundle of "a�ne G-spaces" over X. To be more precise, it is a �bre
bundle π : P → X together with a continuous, right action of G on P which preserves the
�bres (if y ∈ Px, then ∀g ∈ G, yg ∈ Px), and acts simply and transitively on them. Thus the
�bres are exactly the orbits of G.

Moreover, every point in X has a neighbourhood U and a homomorphism

hU : π−1(U)→ U ×G
p 7→ (π(p), γ(p))

with the property that h(pg) = (π(p), γ(p)g), ∀g ∈ G.

Examples. � Let π : P → X be a 2-sheeted covering space of X, and let G = Z�2Z.
The group G acts on P by interchanging the sheets, which preserves the �bres. That

is clearly a principal Z�2Z-bundle.

� Let E be a real n-dimensional vector bundle over X, and let PGLnE be the bundle of
bases of E, that is the bundle whose �bre at x ∈ X is the set of all bases for the vector
space Ex (the �bre over x in E). This is a GLn principal bundle.

Fix a matrix g = (aij) ∈ GLn. Then given a basis v = (v1, . . . , vn) of Ex at a point
x ∈ X, we set vg = (v′1, . . . , v

′
n) where

v′j =
n∑
k=1

vkakj

This action is clearly continuous, and it is simple and transitive on the �bres.

A.2 Associated bundles

More about associated bundles can be found in [6], Chapter I, p54-55.
Let P (M,G) be a principal �bre bundle over M with group G and let F be a manifold

on which G acts on the left. We shall construct a �bre bundle E(M,F, P,G) associated with
P with standard �bre F .

On the product manifold P ×F , we let G acts on the right as follows : an element a ∈ G
maps the element (u, ξ) ∈ P × F into (ua, a−1ξ) ∈ P × F . The quotient space of P × F by
this group action is denoted by E = P ×G F .

At this moment, E is just a set, but we can introduce a di�erentiable structure. The
mapping

P × F →M

(u, ξ) 7→ π(u)
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induces a mapping πE, called the projection of E onto M . For each x ∈ M , the set π−1
E (x)

is called the �bre of E over x. Every point x ∈M has a neighbourhood U such that π−1(U)
is isomorphic to U × G. Identifying π−1(U) with U × G, we see that the action of G on
π−1(U)× F on the right is given by

b : (x, a, ξ) 7→ (x, ab, b−1ξ) for (x, a, ξ) ∈ U ×G× F and b ∈ G

It follows that the isomorphism π−1(U) ' U×G induces an isomorphism π−1
E (U) ' U×F .

We can therefore introduce a di�erentiable structure on E by the requirement that π−1
E (U)

is an open submanifold of E which is di�eomorphic with U × F under the isomorphism
π−1
E (U) ' U × F . The projection πE is then a di�erentiable mapping of E onto M . We call
E the �bre bundle over the base M , with (standard) �bre F and (structure) group G, which
is associated with the principal �bre bundle P .

Example. Let M be a manifold of dimension n. Let L(M) be the set of all linear frames u
at all points of M . It is a GLn(R) principal bundle over M . Then the tangent bundle TM
is an associated bundle with L(M), with standard �bre Rn.

B Connections

B.1 On principal bundles

For proofs and further results about connections, see [6], chapter II, p63-64.
Let P (M,G) be a principal bundle over a manifold M with group G. For each u ∈ P ,

let TuP be the tangent space of P at u and Gu the subspace of TuP consisting of vectors
tangent to the �bre through u.

De�nition 48. A connection Γ on P is an assignment of a subspace Qu of TuP to each
u ∈ P such that :

1. TuP = Gu ⊕Qu (direct sum);

2. Qua = (Ra)∗Qu for every u ∈ P and a ∈ G, where Ra is the transformation of P induced
by Rau = ua;

3. Qu depends di�erentiably on u.

Condition 2 means that the distribution u 7→ Qu is invariant by G. We call Gu the vertical
subspace and Qu the horizontal subspace of TuP .

De�nition 49. A vector X ∈ TuP is called vertical (resp. horizontal) if it lies in Gu (resp.
Qu). By 1, every vector can be uniquely written as X = Y + Z, where Y ∈ Gu and Z ∈ Qu.
We call Y (resp. Z) the vertical (resp. horizontal) component of X and denote it by vX
(resp. hX).

Given a connection Γ in P , we de�ne a 1-form on P with value in the Lie algebra G of G
as follows. Every A ∈ G induces a vector �eld A∗ on P by setting, for u ∈ P ,

(A∗)u =
d

dt

(
u.etA

)
|t=0

called the fundamental vector �eld corresponding to A, and that

A 7→ (A∗)u
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is a linear isomorphism of G onto Gu for each u ∈ P .
For each X ∈ TuP , we de�ne ω(X) to be the unique A ∈ G such that (A∗)u is equal to

the vertical component of X. So ω(X) = 0 if and only if X is horizontal. The form ω is
called the connexion form of the given connection Γ.

Proposition 50. The connection form ω of a connection Γ satis�es the following conditions
:

1. ω(A∗) = A, for every A ∈ G ;

2. (Ra)
∗ω = Ad(a−1)ω, that is ω ((Ra)∗X) = Ad(a−1)ω(X), for every a ∈ G and every

vector �eld X on P .

Conversely, given a G -valued 1-form ω on P satisfying 1 and 2, there is a unique
connection Γ on P whose connection form is ω.

The projection π : P → M induces a linear mapping π : TuP → TxM for each u ∈ P ,
where x = π(u). When a connection is given, π maps the horizontal subspace Qu isomorphi-
cally onto TxM .

The horizontal lift (or simply lift) of a vector �eld X on M is the unique vector �eld X∗

on P which is horizontal and which projects onto X, that is π(X∗u) = Xπ(u), ∀u ∈ P .

Proposition 51. Given a connection in P and a vector �eld X on M , there is a unique
horizontal lift X∗ of X. The lift X∗ is invariant by Ra, ∀a ∈ G. Conversely, every horizontal
vector �eld X∗ on P invariant by G is the lift of a vector �eld X on M .

Proposition 52. Let X∗ and Y ∗ be the horizontal lifts of X and Y respectively. Then

1. X∗ + Y ∗ is the horizontal lift of X + Y ;

2. For every function f on M , f ∗.X∗ is the horizontal lift of fX where f ∗ is the function
on P de�ned by f ∗ = f ◦ π;

3. The horizontal component of [X∗, Y ∗] is the horizontal lift of [X, Y ].

B.2 On associated bundles

The following comes from [7], 10.4, p346-347.
Let P (M,G) be a G-bundle with the projection πP . Let us take a chart Ui of M and a

section σi over Ui. We take the canonical trivialization φi(p, e) = σi(p). Let γ̃ be a horizontal
lift of a curve γ : [0, 1] → Ui. We denote γ(0) = p0 and γ̃(0) = u0. Associated with P is a
vector bundle E = P ×ρ V with the projection πE. Let X ∈ Tp0M be a tangent vector to
γ(t) at p0. Let s ∈ Γ(M,E) be a section, or a vector �eld, on M . Write an element of E as
[(u, v)] = {(ug, ρ(g)−1v)|u ∈ P, v ∈ V, g ∈ G}. We choose the following form :

s(p) = [σi(p), ξ(p)]

as a representative.
Now, along a curve γ : [0, 1] → M , we have s(t) = [γ̃(t), η(t)], where γ̃(t) is an arbitrary

horizontal lift of γ(t). The covariant derivative of s(t) along γ(t) at p0 = γ(0) is de�ned by

∇Xs =

[
γ̃(0),

d

dt
η(γ(t))

∣∣
t=0

]
(17)
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where X is the tangent vector to γ(t) at p0. For the covariant derivative to be really intrinsic,
it should not depend on hte horizontal lift. Let γ̃′(t) = γ̃(t)a (a ∈ G) be another horizontal
lift of γ. If γ̃′(t) is chosen to be the horizontal lift, we have a representative [(γ̃′(t), a−1η(t))].
The covariant derivative is now given by[

γ̃′(0),
d

dt
(a−1η(t))

∣∣
t=0

]
=

[
γ̃′(0)a−1,

d

dt
η(t)

∣∣
t=0

]
which agrees with 17. Hence ∇Xs depends only on the tangent vector X and the section
s ∈ Γ(M,E) and not on the horizontal lift γ̃(t). The de�nition depends only on a curve γ
and a connection and not on local trivializations.
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